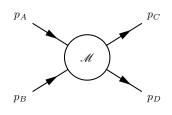
Introduction to Elementary Particle Physics

3: An (continued) overview of Calculations

Dr. Sahal Yacoob

25 August 2020

Homework


If the LHC has collected $25\,fb^{-1}$ of data, how many proton-proton collisions have they produced? $(\sigma_{pp}\simeq 100mb)$

The Second Golden Rule

The Second Golden Rule¹ (or Born approximation) is:

$$\underbrace{dW_r}_{\text{interaction rate}} = 2\pi \left[\underbrace{\int d^3 \mathbf{r} \psi_{\mathbf{r}}^* \mathbf{V}(\mathbf{r}) \psi_{\mathbf{i}}}^2 \right]^2 \times \underbrace{\rho}_{\text{phase space}}$$

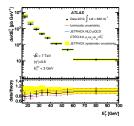
 $\mathcal{M} \equiv \langle f | V | i \rangle$ contains the *dynamical* information of the interaction from state $|i\rangle$ to state $|f\rangle$ (potential (V), charge, spin, etc)

 ρ contains the *kinematic* information of the interaction $(p_A, p_B, p_C, p_D, ...)$

Golden Rule for Decay and Scattering

With the Born approximation, an assumption that we work with spin-averaged amplitudes, and a few pages of maths, the decay rate for a two-body decay $(A \to B + C)$ can be shown to be:

$$\Gamma = \frac{|\mathbf{p}|}{8\pi m_A^2} |\mathcal{M}|^2$$

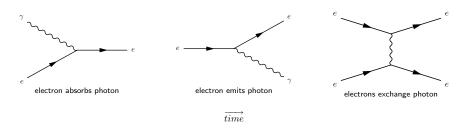

Similarly, the differential cross section for a $2 \to 2$ scatter $(A+B \to C+D)$ can be shown to be:

$$\frac{d\sigma}{d\Omega} = \left(\frac{1}{8\pi}\right)^2 \frac{|\mathcal{M}|^2}{(E_A + E_B)^2} \frac{|\mathbf{p}_f|}{|\mathbf{p}_i|}$$

Comparing Theory and Experiment

M can be calculated with the Feynman Rules², so decay rates and cross sections can be calculated then compared to experiment.

$$\underbrace{\left(\frac{1}{8\pi}\right)^2 \frac{|\mathcal{M}|^2}{(E_A + E_B)^2} \frac{|\mathbf{p}_f|}{|\mathbf{p}_i|}}_{\text{theorist calculates}} = \underbrace{\frac{d\sigma}{d\Omega}}_{\text{experimentalist measures}} = \underbrace{\frac{dN_{\text{scat}}}{d\Omega \int \mathcal{L} dt}}_{\text{experimentalist measures}}$$



- yellow band is theory calculation
 - black points are experimental data

²take honours particle physics if you want to see how > (3) (2) (2) (2) (3)

Particle Interactions

Force is transmitted when a fermion emits or absorbs a boson:

These are called Feynman diagrams.

- time flows left to right
- arrow denotes particle (forward) or antiparticle (backward)
- the vertical axis has no physical meaning

Propagators

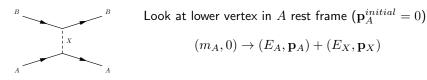
The (unobserved) particle exchanged is called the *propagator*.

Look at the first half of the $e^+e^- \rightarrow e^+e^-$ diagram:

Can you conserve 4-momentum (p) here?

Particles that are 'off mass shell' are called virtual particles.

- propagators are virtual
- initial and final state particles are real


A particle can be virtual provided doesn't live too long:

$$\Delta E \Delta t \geq \frac{1}{2}$$

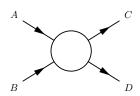
Range of a Force

Take the general $AB \rightarrow AB$ interaction via particle X.

So,
$$\Delta E = E_f - E_i$$

= $E_A + E_X - m_A$
= $\sqrt{\mathbf{p}_A^2 + m_A^2} + \sqrt{\mathbf{p}_A^2 + m_X^2} - m_A$

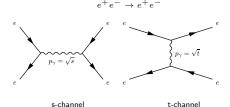
The limit case $\mathbf{p}_A \to 0$ gives $\Delta E = m_X$, so $\Delta E \geq m_X$ Therefore, Heisenberg says

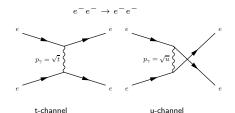

$$\Delta E \Delta t \geq \frac{1}{2} \qquad \rightarrow \Delta t \geq \frac{1}{2\Delta E} \qquad \rightarrow \qquad \Delta t_{unmeasurable} = \tau \leq \frac{1}{2m_X}$$

Massive propagators have limited range, R (remember $c=\hbar=1$).

Mandelstam Variables

Mandelstam³ variables are Lorentz invariants in $2 \rightarrow 2$ interactions:

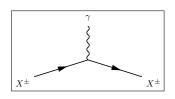



$$s \equiv (p_A + p_B)^2$$

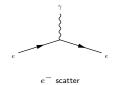
$$t \equiv (p_A - p_C)^2$$

$$u \equiv (p_A - p_D)^2$$

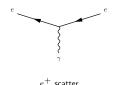
Examples:



³South African, BSc from Wits in 1952

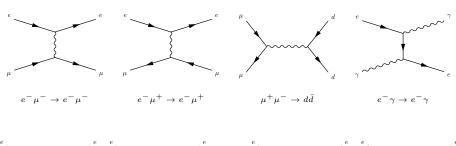

Quantum Electrodynamics (QED)

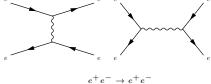
Electromagnetism mediated by the photon and described by QED. Every QED interaction is based on this *vertex*:



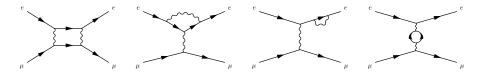
- \blacktriangleright the solid line (X^\pm) is any electromagnetically charged particle
- the squiggly line is a photon (γ)
- the coupling constant is $\alpha = \frac{1}{137}$

The vertex can be rotated to give other processes:





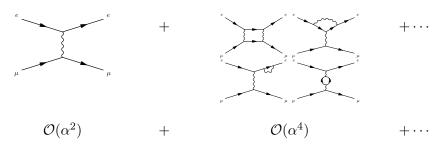
Some Examples of QED Interactions



Higher Order Diagrams

The previous examples are the *lowest order (LO)* diagrams for the processes. Every process has *higher order* diagrams.

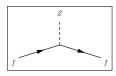
Next-to-leading order (NLO) diagrams for $e^-\mu^- \to e^-\mu^-$ are:

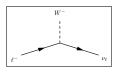

Higher order diagrams are constructed by adding additional *internal lines* without adding *external lines*.

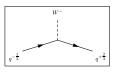
Note that each diagram is constructed of the fundamental QED vertex, each vertex with a 'strength' proportional to α .

Perturbation Theory

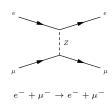
To calculate what happens in an interaction like $e^-\mu^- \to e^-\mu^-$, one must add the diagrams at every order:

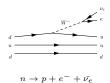

Because $\alpha < 1$, each higher order contributes a smaller amount to the result. Phew!

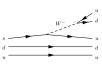

Weak Interactions


Weak interactions are mediated by W and Z

- ▶ the weak charge is rather complex...
- ▶ all fermions carry weak charge
- lacktriangleq W boson couples charged leptons to neutrinos
- lacktriangleq W boson can also change quark flavour

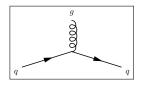

There are 3 weak interaction vertices:

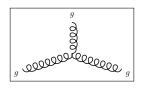


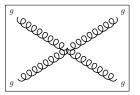


Weak Interaction Examples

$$d + \nu_e \to u + e^-$$




Quantum Chromodynamics (QCD)


QCD describes the strong interaction mediated by the gluon

- the charge of the strong interaction is colour
- colour comes in 3 types: red, green, blue (plus anti-colours)
- only quarks and gluons carry colour charge

There are 3 fundamental QCD vertices:

The strong *coupling constant* is $\alpha_s \gtrsim 1$

Freedom and Confinement

The gluon carries colour, unlike the photon which does not carry electric charge, this has consequences...

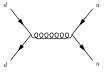
Asymptotic Freedom:

- coupling constants: $\alpha_s \gtrsim 1$, while $\alpha < 1$
- ▶ thankfully, at small distances, α_s becomes < 1, so perturbation theory can be used for some QCD calculations
- this is called asymptotic freedom (quarks are "free to move around" inside a proton)

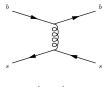
Confinement:

- no naturally occurring particles carry colour
- quarks are confined to bound states with no net colour charge
- particles composed of quarks are called hadrons

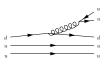
Hadron Classification


Hadron: a particle made of quarks is called a hadron.

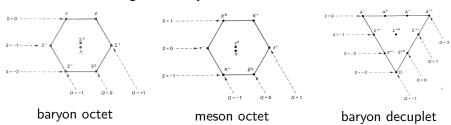
- Meson: a hadron made of a quark-antiquark pair
- ▶ Baryon: a hadron made of three quarks or three antiquarks


Examples:

	Quark Content	Spin	Charge	$Mass\ (MeV)$
Baryon				
$\overline{}_p$	uud	1/2	+1	938
\bar{p}	$\bar{u}\bar{u}ar{d}$	1/2	-1	938
n	udd	1/2	0	939
Σ^0	uds	1/2	0	1192
Δ^+	uud	3/2	+1	1232
Δ^{++}	uuu	3/2	+2	1232
Meson				
π^0 π^{\pm} ρ^{\pm} K^{\pm}	$(u\bar{u} - d\bar{d})/\sqrt{2}$	0	0	135
π^{\pm}	$uar{d}$, $dar{u}$	0	± 1	140
$ ho^\pm$	$u\bar{d}, d\bar{u}$	1	± 1	775
K^{\pm}	$u\bar{s}, s\bar{u}$	0	± 1	494
D^{\pm}	$c\bar{d}$, $d\bar{c}$	0	± 1	1869
B^{\pm}	$uar{b}$, $bar{u}$	0	± 1	5279
ψ	$c\bar{c}$	1	0	3097
Υ	$bar{b}$	1	0	9460


Example Diagrams

 $b\bar{s} \to b\bar{s}$

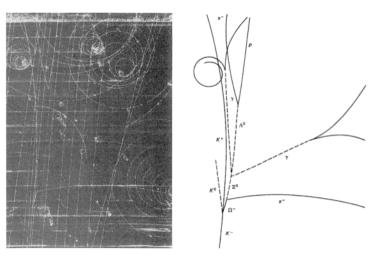


$$\Delta^+ \to p + \pi^0$$

Hadrons and the Strong Interaction

Before the strong interaction was understood:

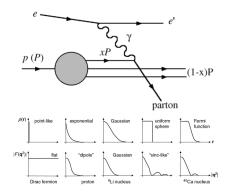
- ightharpoonup many 'fundamental' particles were observed ($m\lesssim 2~{
 m GeV})$
- ► the particles were arranged in patterns, Gell-Mann called it the "The Eightfold Way"



The symmetry indicates that hadrons are composite particles.

The Omega Minus

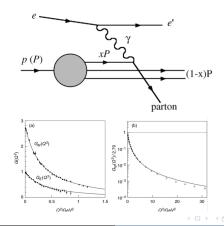
Based on the baryon decuplet, Gell-Mann predicted the Ω^-



What about the Pauli exclusion principle?

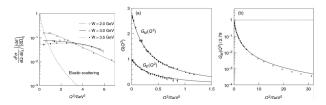
Evidence for Quarks: Lepton-Nucleon Scattering

Similar to Rutherford's discovery of the nucleus


- bombard protons and neutrons with electron 'probes'
- ▶ if nucleons are made of partons the resulting differential cross section will show the internal structure

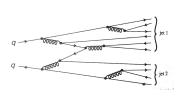
Evidence for Quarks: Lepton-Nucleon Scattering

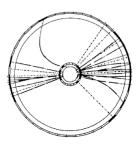
Similar to Rutherford's discovery of the nucleus


- bombard protons and neutrons with electron 'probes'
- ▶ if nucleons are made of *partons* the resulting differential cross section will show the internal structure

Evidence for Quarks: Lepton-Nucleon Scattering

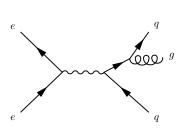
Similar to Rutherford's discovery of the nucleus

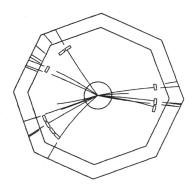

- bombard protons and neutrons with electron 'probes'
- ▶ if nucleons are made of *partons* the resulting differential cross section will show the internal structure



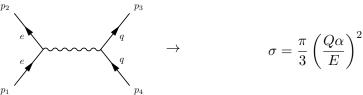
Evidence for Quarks: Jet Production

Jets (a columnated flow of hadrons) are observed in electron-positron collisions.


- underlying process $e^+ + e^- \rightarrow q + \bar{q}$
- outgoing quarks form hadrons due to confinement, this is called hadronization

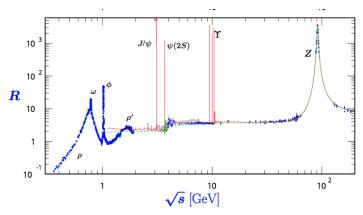


Gluons


Gluons can also be produced, in e^+e^- collisions:

Colour Charge

Most direct evidence of colour comes from $R \equiv \frac{\sigma(ee \to hadrons)}{\sigma(ee \to \mu\mu)}$.


where Q is the charge in units of e $(\frac{2}{3} \text{ for } u,c,t \text{ and } -\frac{1}{3} \text{ for } d,s,b)$

- ightharpoonup if $E < 2m_q$, quark production is kinematically forbidden
- $ightharpoonup \sigma$ increases when heavier quarks are energetically allowed

If we assume quarks carry 3 colours: $R(E)=3\sum Q_i^2$

$$R \ \to \ \underbrace{3\left[\left(\frac{2}{3}\right)^2 + 2(-\frac{1}{3})^2 \right]}_{2 \text{ for } E < 2m_c} \ \to \ \underbrace{3\left[2(\frac{2}{3})^2 + 2(-\frac{1}{3})^2 \right]}_{3.33 \text{ for } E < 2m_b} \ \to \ \underbrace{3\left[2(\frac{2}{3})^2 + 3(-\frac{1}{3})^2 \right]}_{3.67 \text{ for } E < 2m_t}$$

R does not describe hadronic resonances, but:

- ▶ the factor of 3 is clearly needed to describe data
- strong evidence of quarks carrying 3 colours