NITHeP Mini-school on quantum computing

INTRODUCTION TO THE THEORY OF QUANTUM COMPUTING

Daniel K. Park dkp.quantum@gmail.com

Outline

Part I: What & Why

· Introduction & Background

Part II: How

- Quantum Circuit
- · Quantum Algorithms
- Quantum Error Correction

Quantum In Technology

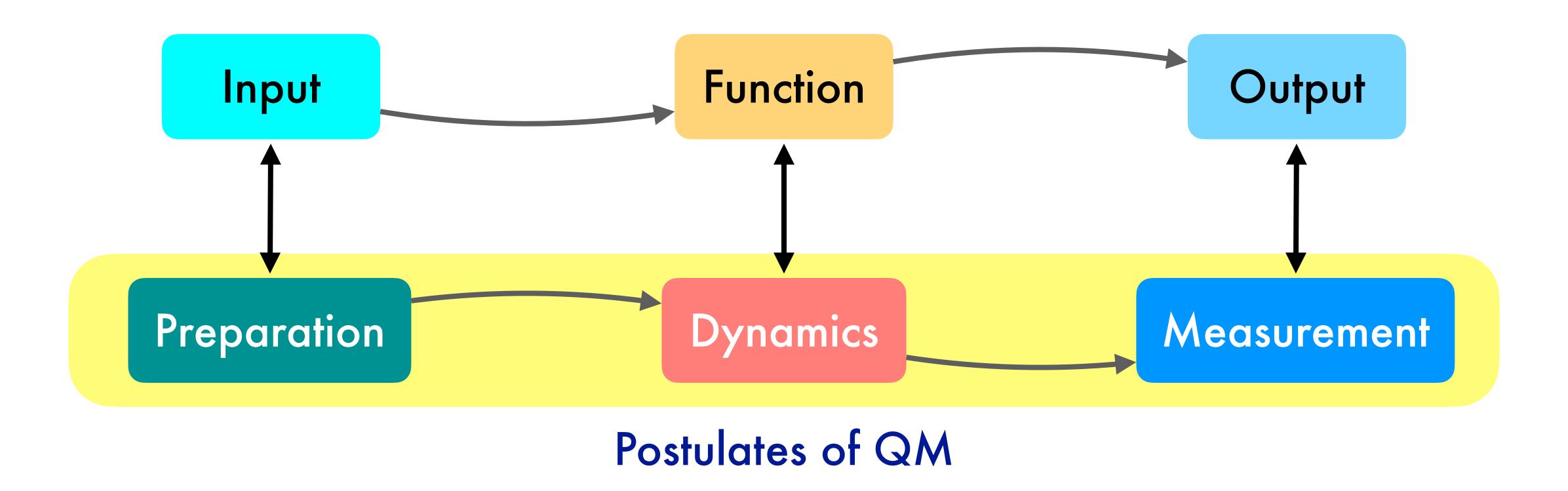
Today

Future

Use the laws of quantum physics for better computation, communication, and sensing

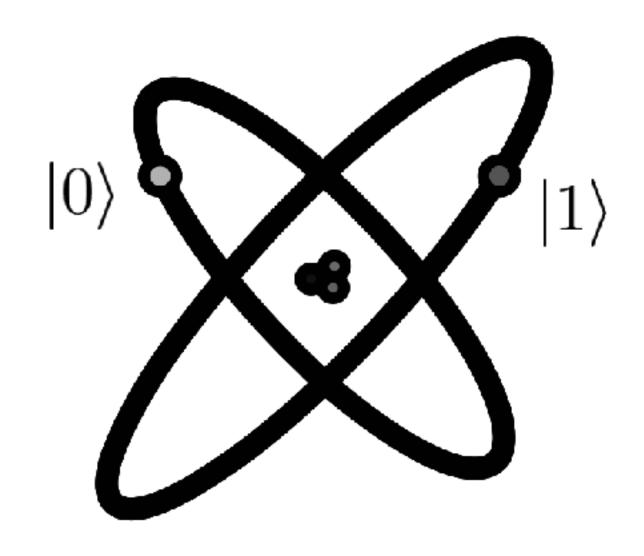
Quantum Mechanics: Brief Review

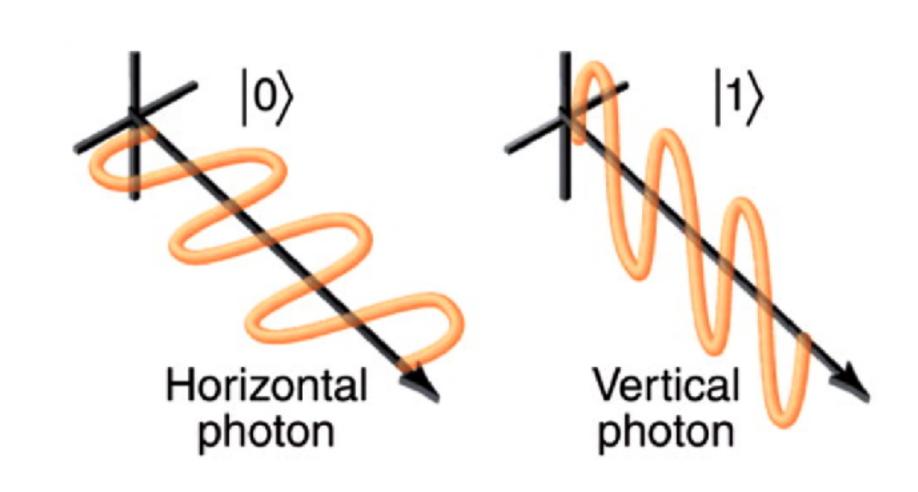
- · Quantum Mechanics is a mathematical theory that describes nature at the microscopic/atomic scale.
- · Quantum Computing consists of:

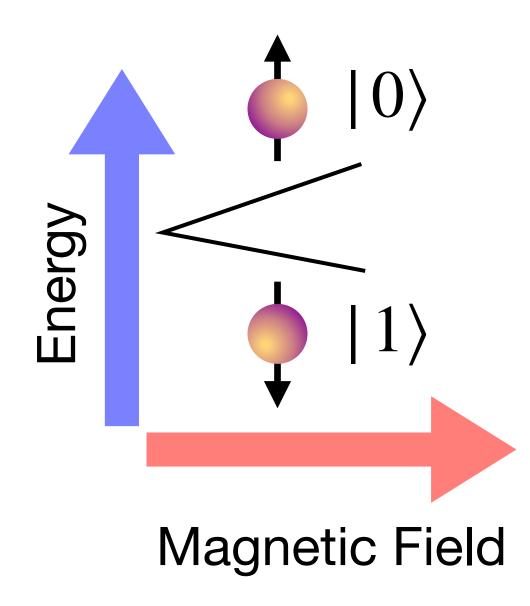


Abstraction: Qubit

- Bit vs Qubit: Qubit is a unit of quantum information.
- Usually a two level quantum system
- Examples:

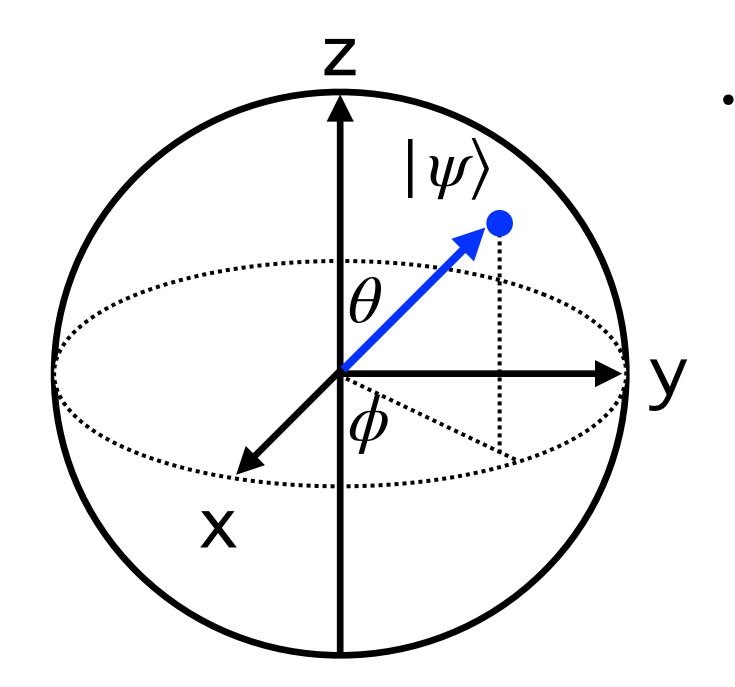






Bloch Sphere Representation

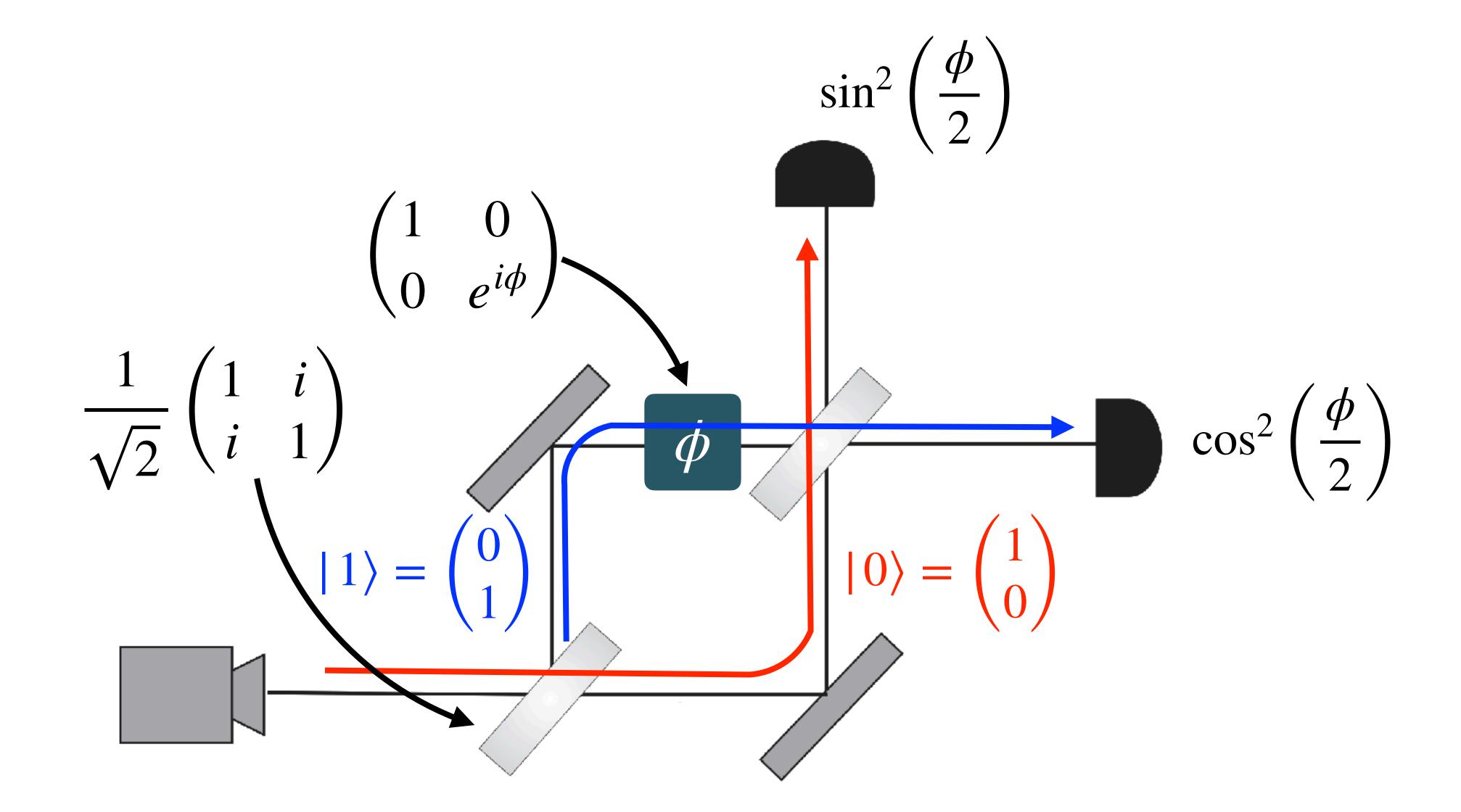
- For a single qubit, $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$
- . Since $\alpha, \beta \in \mathbb{C}$, $|\alpha|^2 + |\beta|^2 = 1$, $|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$.
- The numbers heta and ϕ define a point on the unit three-dimensional sphere.



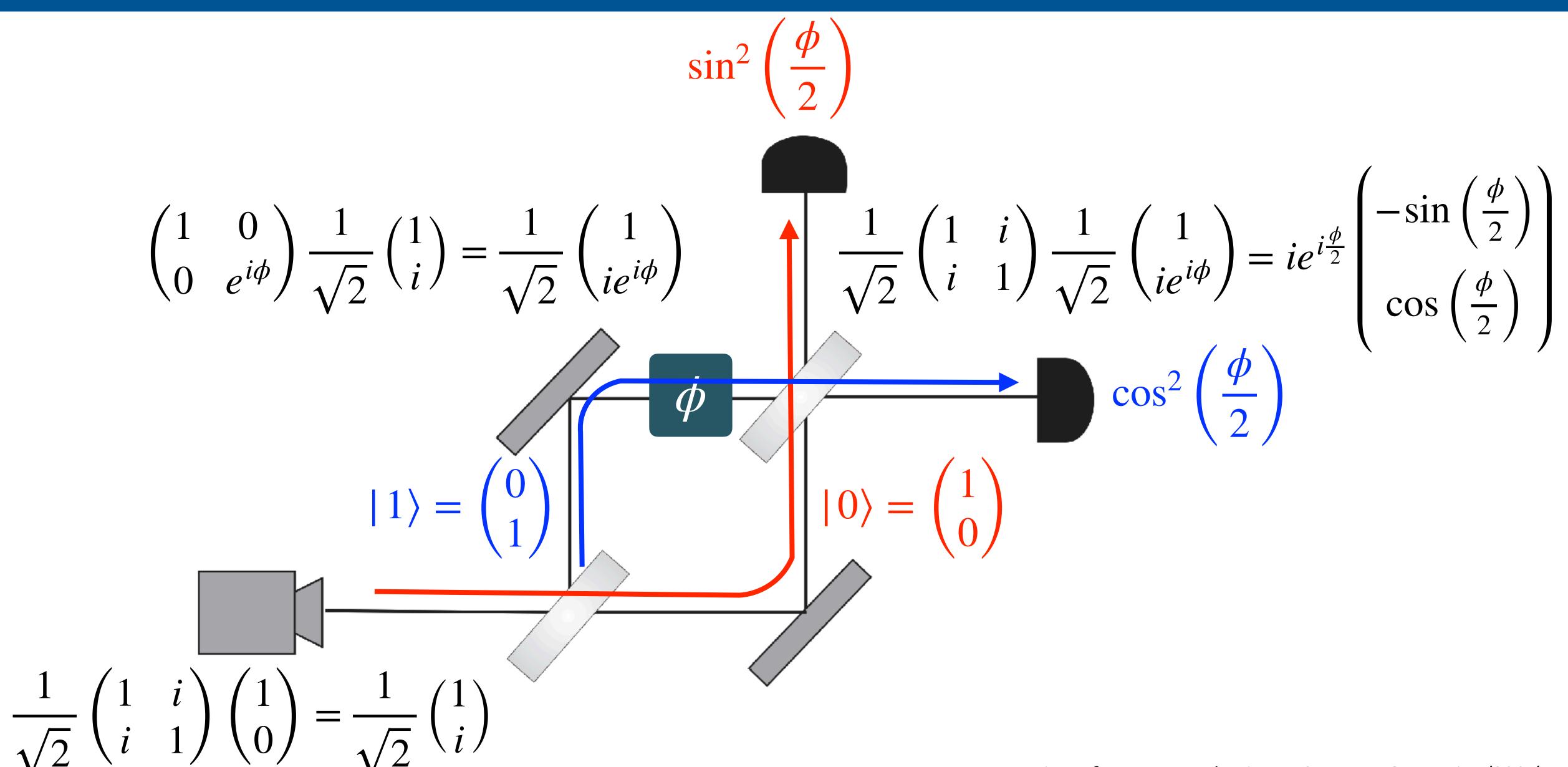
· A single qubit unitary operation can be represented as rotations on the Bloch sphere.

$$R_{\hat{n}}(\alpha) \equiv \exp\left(-i\frac{\alpha}{2}\hat{n}\cdot\vec{\sigma}\right), \ \vec{\sigma} \in \{X, Y, Z\}$$
$$= \cos\left(\frac{\alpha}{2}\right)I - i\sin\left(\frac{\alpha}{2}\right)\hat{n}\cdot\vec{\sigma}$$

Revisit Mach-Zehnder Interferometer



Revisit Mach-Zehnder Interferometer



Postulates of QM: Composite System

The state space of a composite physical system is the tensor product space $\mathcal{H}_1 \otimes ... \otimes \mathcal{H}_n$ of the state spaces of the component subsystems $\mathcal{H}_1, \ldots, \mathcal{H}_n$.

Example:
$$|\psi_1\rangle = \alpha_1 |0\rangle + \beta_1 |1\rangle$$
 $|\psi_2\rangle = \alpha_2 |0\rangle + \beta_2 |1\rangle$

$$|\psi_1\rangle \otimes |\psi_2\rangle = (\alpha_1|0\rangle + \beta_1|1\rangle) \otimes (\alpha_2|0\rangle + \beta_2|1\rangle)$$

Entanglement

Some composite quantum states cannot be written in the product form, i.e. $|\psi_1\rangle \otimes |\psi_2\rangle \otimes ... \otimes |\psi_m\rangle$

Example:
$$|\Phi_{00}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$
 cannot written as $|\psi_1\rangle \otimes |\psi_2\rangle$

- · A quantum state that can be written in the product form is separable.
- · A quantum state that is not separable is entangled.
- Entanglement describes correlations between quantum systems that cannot be described with classical physics.



© Composite system: Measurement

General two-qubit state: $\alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$, $\sum_{i} |\alpha_{ii}|^2 = 1$ If we measure both bits, we get $|ij\rangle$ with probability $|\alpha_{ii}|^2$.

What if we just measure one of them, e.g. the first qubit?

$$\text{Rewrite: } \sqrt{|\alpha_{00}|^2 + |\alpha_{01}|^2} \, |0\rangle \Bigg(\frac{\alpha_{00} |0\rangle + \alpha_{01} |1\rangle}{\sqrt{|\alpha_{00}|^2 + |\alpha_{01}|^2}} \Bigg) + \sqrt{|\alpha_{10}|^2 + |\alpha_{11}|^2} \, |1\rangle \Bigg(\frac{\alpha_{10} |0\rangle + \alpha_{11} |1\rangle}{\sqrt{|\alpha_{10}|^2 + |\alpha_{11}|^2}} \Bigg) \Bigg)$$

What if we just throw away one of them, e.g. the first qubit?

Probabilistic mixture of states -> Mixed State

Example:
$$|\Phi_{00}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

Throwing away one qubit leaves the other in a completely random state

Comparison to Classical Deterministic Bits

- · The values of a two-state system are labeled with 0 or 1
- \cdot n two-state systems have 2^n possible values, labeled with binary strings. For example, n = 3: 000, 001, 010, 011, 100, 101, 110, 111.
- · More redundant representation:

$$\underbrace{000...0}_{n} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 2^{n} $000...1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$... $11...10 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}$ $11...11 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$



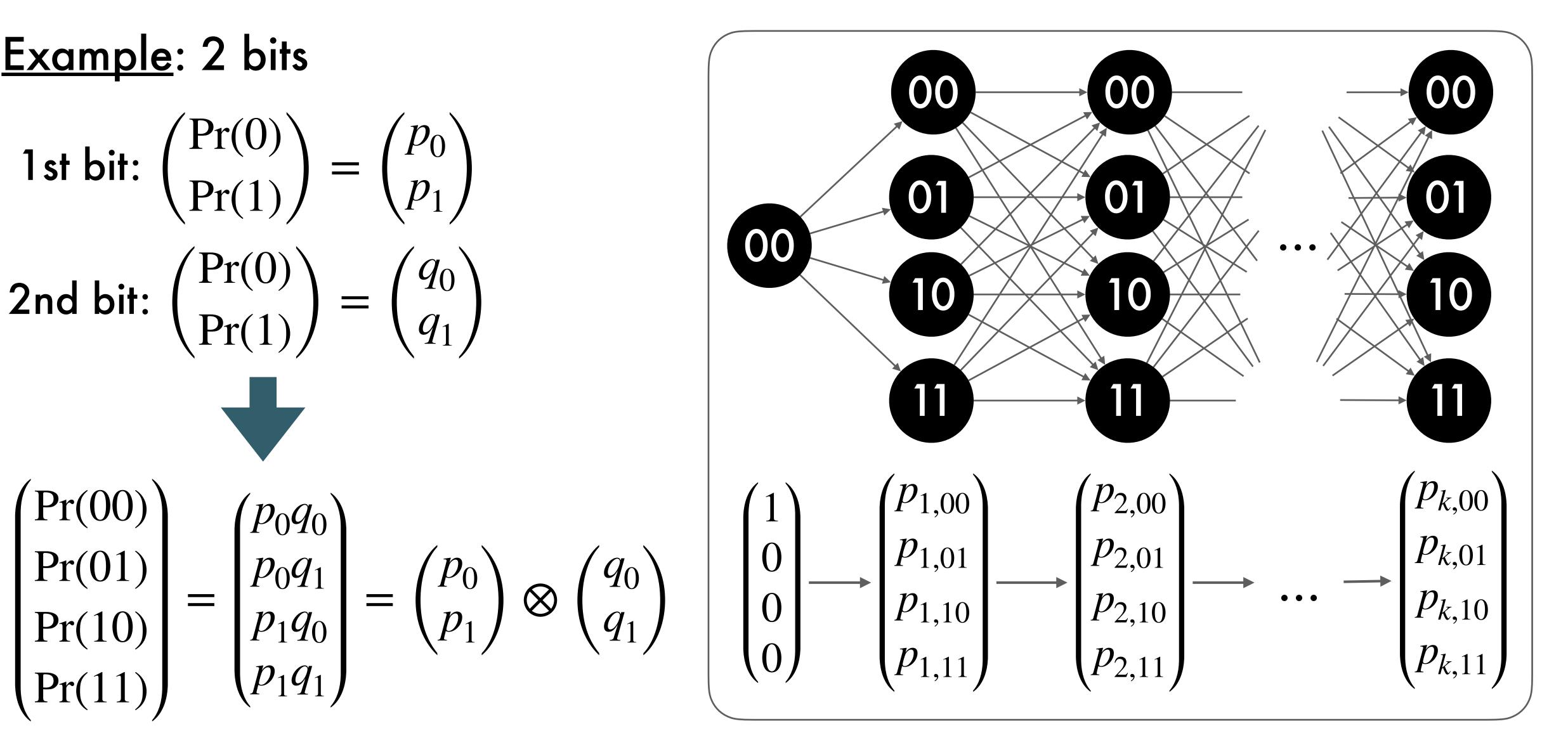
Comparison to Classical Probabilistic Bits

Example: 2 bits

1st bit:
$$\binom{\Pr(0)}{\Pr(1)} = \binom{p_0}{p_1}$$

2nd bit:
$$\binom{\Pr(0)}{\Pr(1)} = \binom{q_0}{q_1}$$

$$\begin{pmatrix} \Pr(00) \\ \Pr(01) \\ \Pr(10) \\ \Pr(11) \end{pmatrix} = \begin{pmatrix} p_0 q_0 \\ p_0 q_1 \\ p_1 q_0 \\ p_1 q_1 \end{pmatrix} = \begin{pmatrix} p_0 \\ p_1 \end{pmatrix} \otimes \begin{pmatrix} q_0 \\ q_1 \end{pmatrix}$$

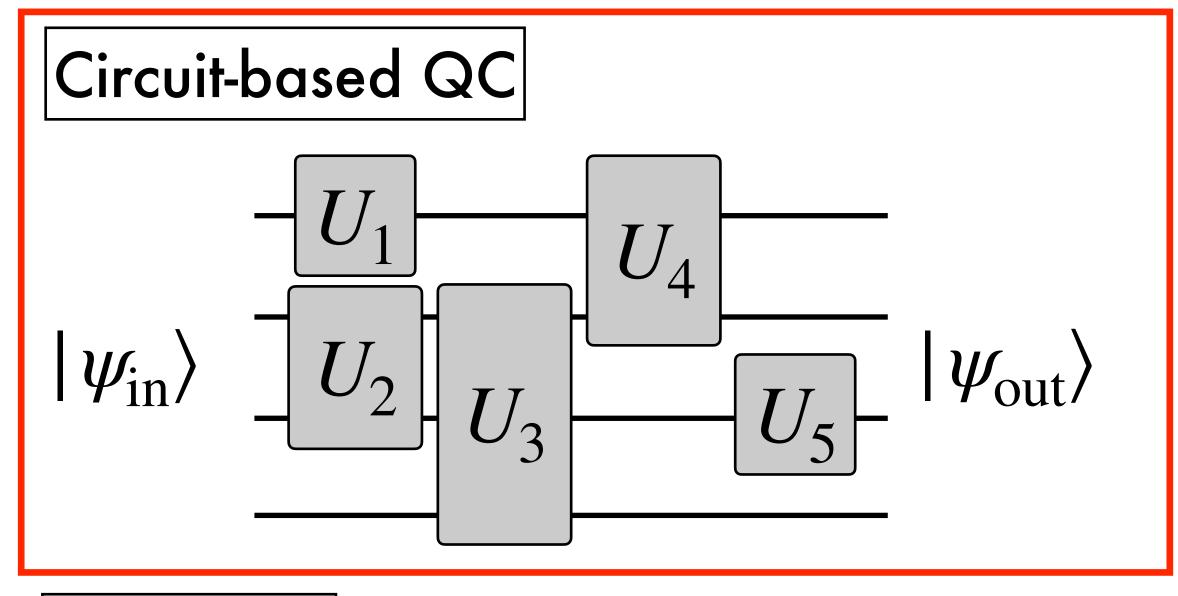


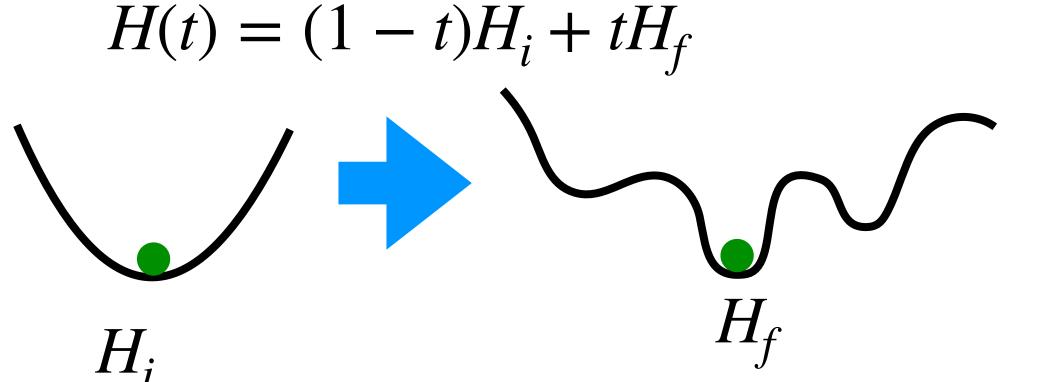
Summary: Bit, Phit, Qubit

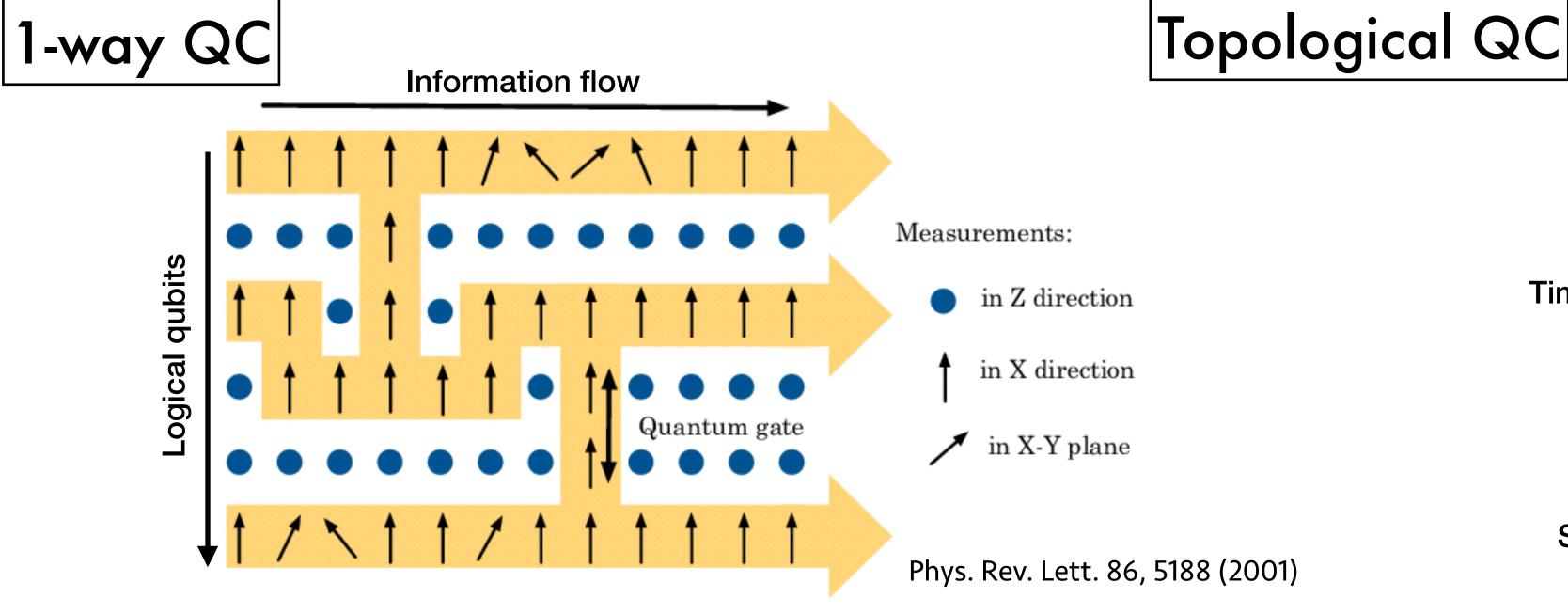
	bit	probabilistic bit	quantum bit
Pictorial	0	p {	
Representation		1-p {	1)
Vector Representation	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\binom{p}{1-p}, p \in \mathbb{R}_+$	$\binom{\alpha}{\beta}, \alpha, \beta \in \mathbb{C}$
Observation		Pr(0) = p	$\Pr(0) = \alpha ^2$
		$\Pr(1) = 1 - p$	$\Pr(1) = \beta ^2$
Evolution	Deterministic	Stochastic	Unitary

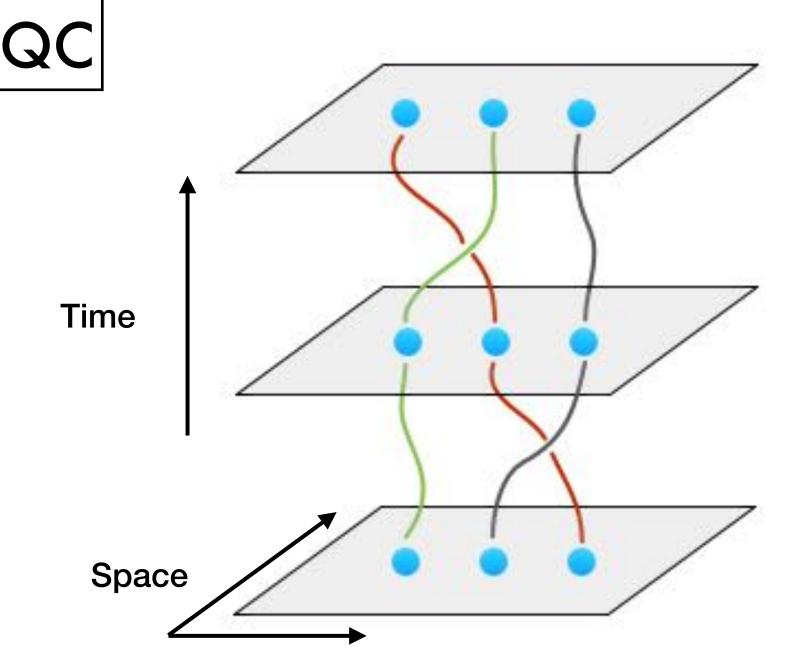
Quantum mechanics: a mathematical generalization of the probability theory

Example Models of Quantum Computing







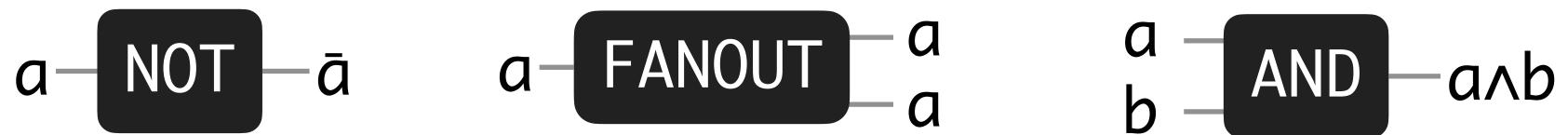


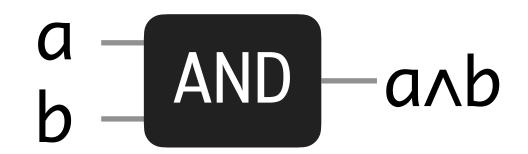
II. Quantum Circuit

Classical Circuits

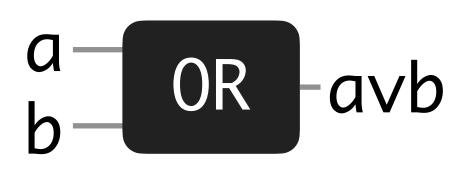
- · Circuit model is a useful model for describing transformations on data in terms of basic operations called gates.
- · An easy way to formalize the notion of computational efficiency
- · Closely tied to the physical implementation of a computation.

Examples:

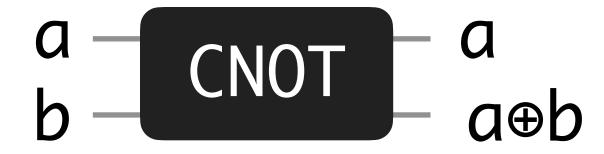




a	b	avb
0	0	0
0	1	1
1	0	1
1	1	1

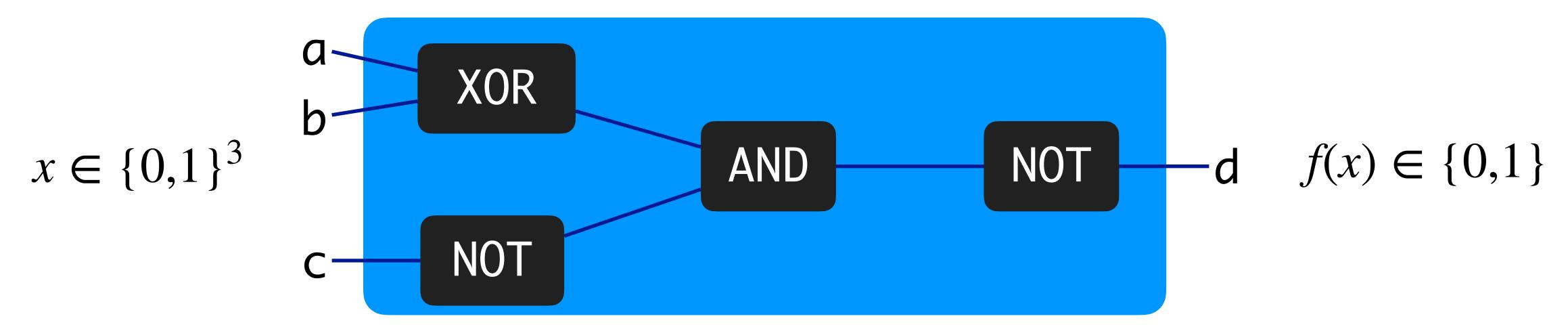


a	b	anb
0	0	0
0	1	0
1	0	0
1	1	1

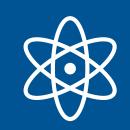


Classical Circuits & Universality

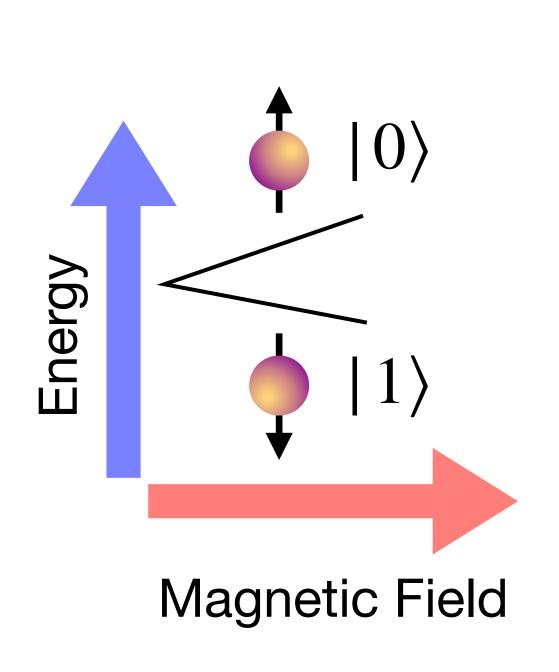
· Gates are glued together to make circuits (arrays of gates), which compute Boolean functions

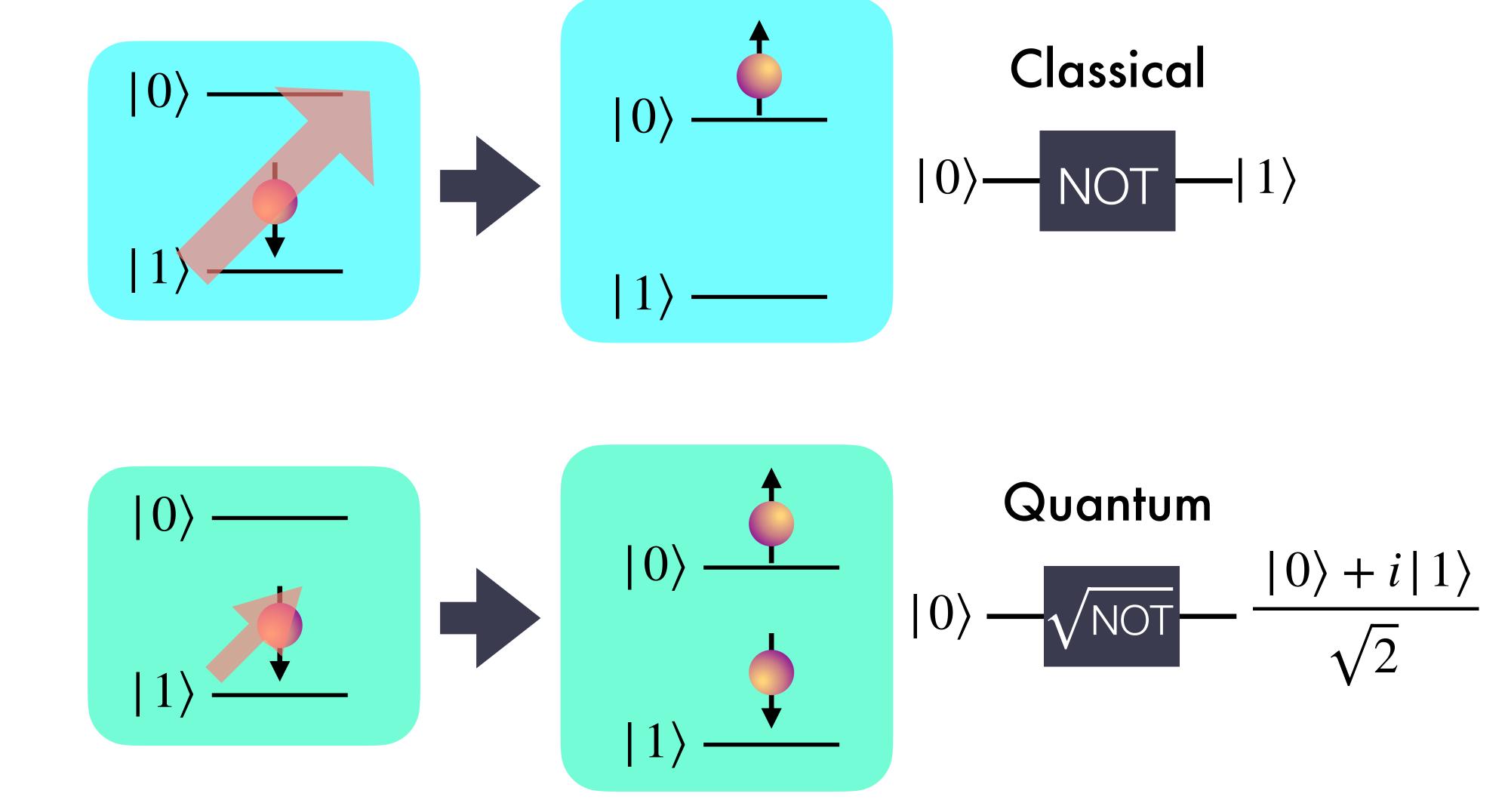


- · A set of gates is universal for classical computation, if for any Boolean function f, a circuit can be constructed for computing f using only gates from that set.
- · NAND, FANOUT is universal



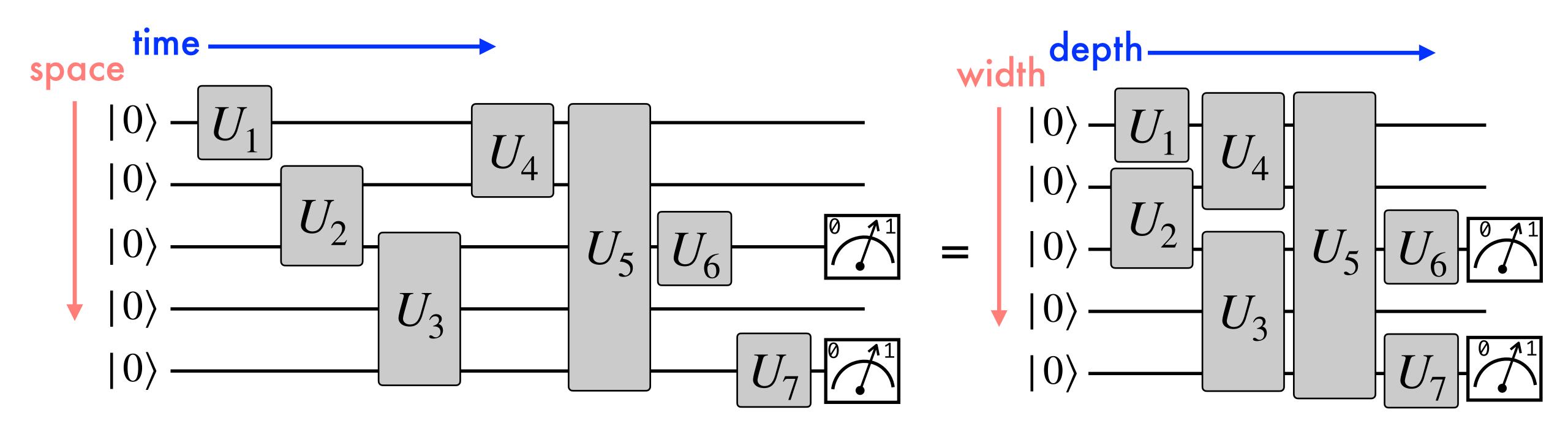
Classical gate vs Quantum gate





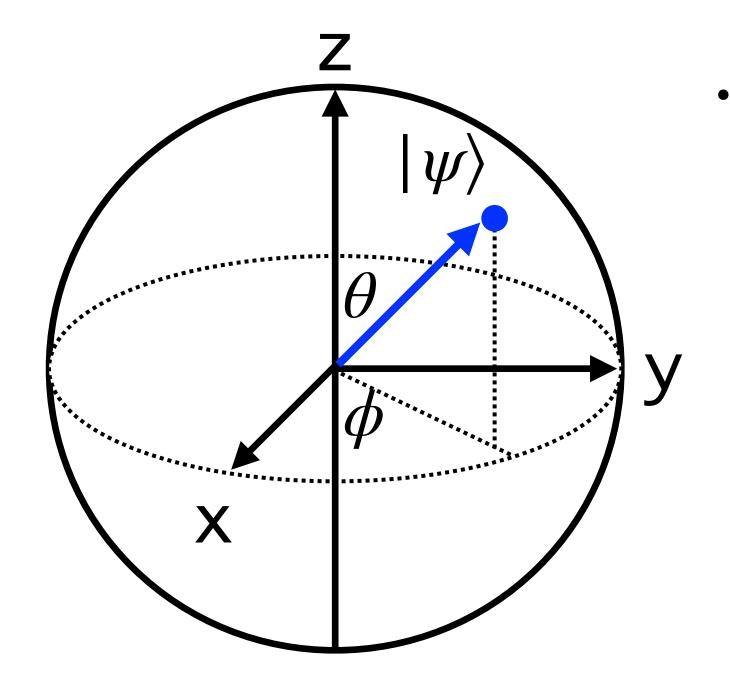
Elements of Quantum Circuit

· Quantum circuit: a reversible acyclic circuit of quantum gates



Bloch Sphere Representation for 1-Qubit Gate

- For a single qubit, $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$
- . Since $\alpha, \beta \in \mathbb{C}$, $|\alpha|^2 + |\beta|^2 = 1$, $|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$.
- The numbers heta and ϕ define a point on the unit three-dimensional sphere.



· A single qubit unitary operation can be represented as rotations on the Bloch sphere.

$$R_{\hat{n}}(\alpha) \equiv \exp\left(-i\frac{\alpha}{2}\hat{n}\cdot\overrightarrow{\sigma}\right), \ \overrightarrow{\sigma} \in \{X, Y, Z\}$$
$$= \cos\left(\frac{\alpha}{2}\right)I - i\sin\left(\frac{\alpha}{2}\right)\hat{n}\cdot\overrightarrow{\sigma}$$

Two Qubit Entangling Gates

- · Must be able to transform $|\psi_1\rangle\otimes|\psi_2\rangle\to|\Psi_{12}\rangle$, where $|\Psi_{12}\rangle$ is entangled
- · What about $(U_1 \otimes U_2) | \psi_1 \rangle \otimes | \psi_2 \rangle$?
- By linearity, $(U_1 \otimes U_2) | \psi_1 \rangle \otimes | \psi_2 \rangle = (U_1 | \psi_1 \rangle) \otimes (U_2 | \psi_2 \rangle)$: Remains separable.
- · Entangling gate examples:

$$CX = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes X$$
, $CZ = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes Z$

$$CX = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{array}{|c|c|c|c|c|}\hline X & = & \\\hline & & \\$$

Universal Set of Quantum Gates

A set of gates G is said to be universal if any n-qubit unitary operator can be approximated to arbitrary accuracy by a quantum circuit using only gates from G.

- · A set composed of any two-qubit entangling gate, together with all one-qubit gates, is universal
- · This is a bit of an overkill: Good approximation suffices.
- · Need access to an infinite number of single-qubit gates.

Universal Set of Quantum Gates

A set of gates G is said to be universal if any n-qubit unitary operator can be approximated to arbitrary accuracy by a quantum circuit using only gates from G.

- · Can we achieve universality with a finite set of gates?
 - → YES: For any number of qubits, $G = \{H, T, CX\}$ is a universal set of gates.

$$CX = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{array}{|c|c|c|c|}\hline X & = & \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \begin{array}{|c|c|c|c|}\hline Z & = & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{array}{|c|c|c|}\hline Z & = & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{array}{|c|c|c|}\hline Z & = & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{array}{|c|c|c|}\hline Z & = & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{array}{|c|c|c|}\hline Z & = & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{array}{|c|c|c|}\hline Z & = & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{array}{|c|c|c|}\hline Z & = & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{array}{|c|c|c|}\hline Z & = & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{array}{|c|c|c|}\hline Z & = & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{array}{|c|c|c|}\hline Z & = & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0$$

No Cloning

- · Is it possible to copy an unknown quantum state?
- The answer is...NO! (due to the linearity of QM)

If copying is possible, then $U_{copy}|\psi\rangle|0\rangle=|\psi\rangle|\psi\rangle$

Let
$$|\psi\rangle = \alpha |\phi_1\rangle + \beta |\phi_2\rangle$$
 $U_{copy}|\psi\rangle |0\rangle = \alpha U_{copy}|\phi_1\rangle |0\rangle + \beta U_{copy}|\phi_2\rangle |0\rangle$
= $\alpha |\phi_1\rangle |\phi_1\rangle + \beta |\phi_2\rangle |\phi_2\rangle \neq |\psi\rangle |\psi\rangle$

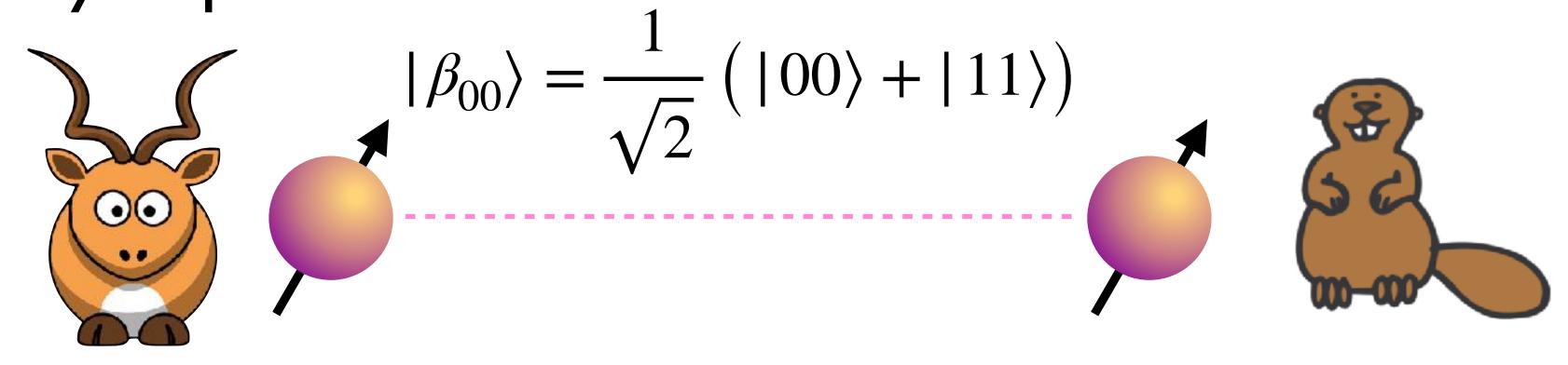
Important in quantum communication, quantum cryptography, quantum error correction, etc.!

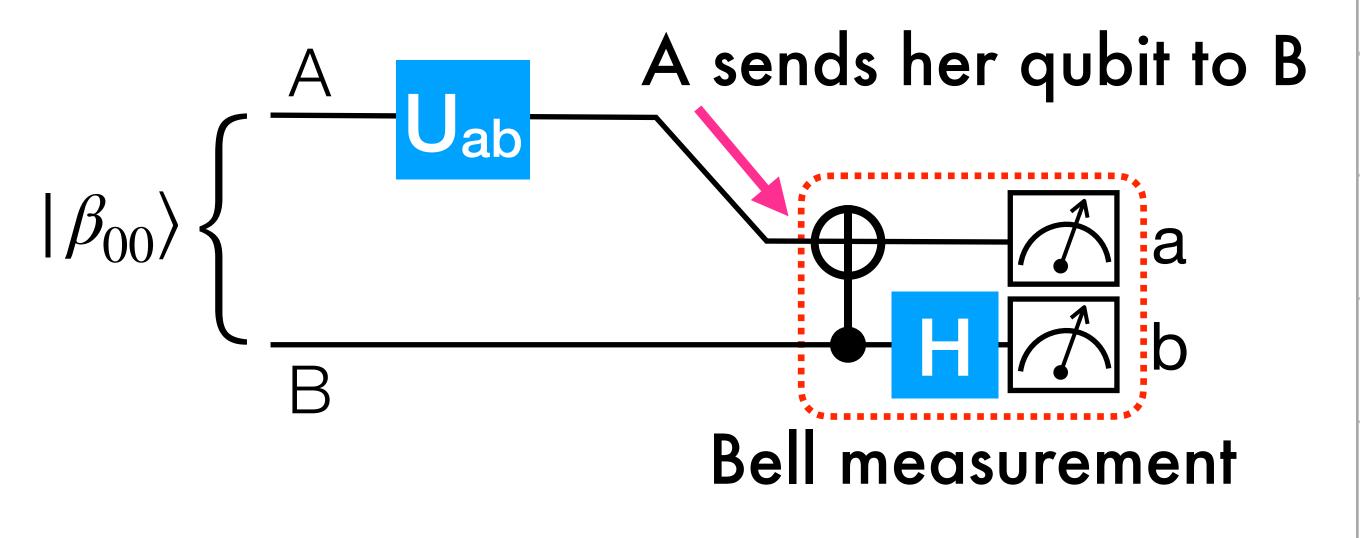
Elementary Q. Protocol: Superdense Coding

- · How many classical bits of information can be sent with a qubit?
- By sending a qubit in $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, only one classical bit of information can be transmitted due to the quantum measurement postulate & no cloning theorem.
- Entanglement allows for 2 classical bits of information to be sent by sending only 1 qubit!

Elementary Q. Protocol: Superdense Coding

Entanglement allows for 2 classical bits of information to be sent by sending only 1 qubit!





U _{ab}	B receives	B measures
	$(00\rangle + 11\rangle)/\sqrt{2}$	00
X	$(01\rangle + 10\rangle)/\sqrt{2}$	01
Z	$(00\rangle - 11\rangle)/\sqrt{2}$	10
ZX	$(01\rangle - 10\rangle)/\sqrt{2}$	11

Elementary Q. Protocol: Quantum Teleportation

- · How many classical bits should be sent in order to communicate the state of a qubit, i.e., $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$?
- At first glance, since $\alpha, \beta \in \mathbb{C}$ it seems that infinitely many bits are required.
- · Entanglement allows for a quantum state to be sent by sending only 2 classical bits of information!

Elementary Q. Protocol: Quantum Teleportation

Entanglement allows for a quantum state to be sent by sending only 2 classical bits of information!

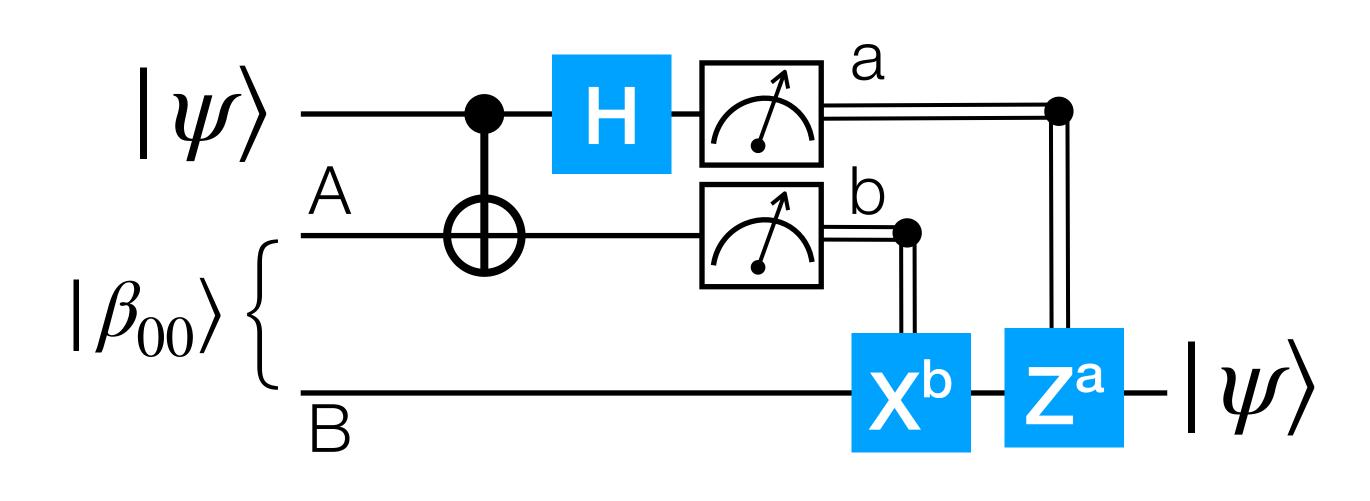
$$|\psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

$$|\psi\rangle|\beta_{00}\rangle = (|\beta_{00}\rangle|\psi\rangle + |\beta_{01}\rangle X|\psi\rangle + |\beta_{10}\rangle Z|\psi\rangle + |\beta_{11}\rangle XZ|\psi\rangle)/2$$

$$|\beta_{01}\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$$

$$|\beta_{10}\rangle = \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)$$

$$|\beta_{11}\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$$



Summary

- Quantum computing:
 Mathematical generalization of the probability theory.
- Quantum circuit:
 Useful for describing transformations of quantum data in terms gates.
- Universality:
 Finite set of gates can approximate any transformation.
- · Elementary quantum protocols:

 Quantum entanglement provides the advantage.