Lecture 2

A brief overview of linearized gravitational waves and their interaction with nonrelativistic particles.

The progression from Newton's law of gravitation to the geodesic equation

Newton's theory is encapsulated in the trajectory of neutral test particles

$$\frac{d^2x^i}{dt^2} + \frac{\partial\phi}{\partial x^i} = 0 {25}$$

where $x^i (i=1,2,3)$ are the spatial coordinates and the source equation for the Newtonian potential ϕ is given by

$$\nabla^2 \phi = 4\pi \rho G \tag{26}$$

with ρ being the mass density.

The progression from Newton's law of gravitation to the geodesic equation

Newton's theory is encapsulated in the trajectory of neutral test particles

$$\frac{d^2x^i}{dt^2} + \frac{\partial\phi}{\partial x^i} = 0 \tag{25}$$

where $x^i (i=1,2,3)$ are the spatial coordinates and the source equation for the Newtonian potential ϕ is given by

$$\nabla^2 \phi = 4\pi \rho G \tag{26}$$

with ρ being the mass density.

 Trajectories as geodesics A curved trajectory in flat three dimensional space. Cartan generalized this viewpoint by interpreting the trajectories as geodesics in four dimensional curved spacetime,

$$\frac{d^2x^{\mu}}{dt^2} + \Gamma^{\mu}_{\nu\rho} \frac{dx^{\nu}}{dt} \frac{dx^{\rho}}{dt} = 0 \tag{27}$$

This is possible if one takes $x^{\mu}=(x^0=t,x^i)$ and chooses the ansatz

$$\Gamma^{i}_{00} = \frac{\partial \phi}{\partial x^{i}}$$
 , all other $\Gamma^{\mu}_{\nu\rho}$ vanish (28)

Partha Nandi Postdoctoral Associate Ste Exploring Quantum Aspects of Gravitational Waves

Reimann Curvature Tensor

$$R^{\alpha}_{\beta\gamma\delta} = \partial_{\gamma}\Gamma^{\alpha}_{\beta\delta} - \partial_{\delta}\Gamma^{\alpha}_{\beta\gamma} + \Gamma^{\alpha}_{\mu\gamma}\Gamma^{\mu}_{\beta\delta} - \Gamma^{\alpha}_{\mu\delta}\Gamma^{\mu}_{\beta\gamma}$$
 (29)

• Reimann Curvature Tensor

$$R^{\alpha}_{\ \beta\gamma\delta} = \partial_{\gamma}\Gamma^{\alpha}_{\beta\delta} - \partial_{\delta}\Gamma^{\alpha}_{\beta\gamma} + \Gamma^{\alpha}_{\mu\gamma}\Gamma^{\mu}_{\beta\delta} - \Gamma^{\alpha}_{\mu\delta}\Gamma^{\mu}_{\beta\gamma}$$
 (29)

Ricci tensor

$$R_{\mu\nu} = R^{\lambda}_{\mu\lambda\nu} \tag{30}$$

In particular

$$\Gamma^{i}_{00} \to R^{i}_{0j0} = \partial_{i}\partial_{j}\phi \implies R^{i}_{0i0} = R_{00} = \vec{\nabla}^{2}\phi$$
 (31)

Reimann Curvature Tensor

$$R^{\alpha}_{\ \beta\gamma\delta} = \partial_{\gamma}\Gamma^{\alpha}_{\beta\delta} - \partial_{\delta}\Gamma^{\alpha}_{\beta\gamma} + \Gamma^{\alpha}_{\mu\gamma}\Gamma^{\mu}_{\beta\delta} - \Gamma^{\alpha}_{\mu\delta}\Gamma^{\mu}_{\beta\gamma}$$
 (29)

Ricci tensor

$$R_{\mu\nu} = R^{\lambda}_{\mu\lambda\nu} \tag{30}$$

In particular

$$\Gamma^{i}_{00} \to R^{i}_{0j0} = \partial_{i}\partial_{j}\phi \implies R^{i}_{0i0} = R_{00} = \vec{\nabla}^{2}\phi$$
 (31)

• Mass or energy density for slowly moving particle

$$T^{00} = \rho c^2 \tag{32}$$

Reimann Curvature Tensor

$$R^{\alpha}_{\ \beta\gamma\delta} = \partial_{\gamma}\Gamma^{\alpha}_{\beta\delta} - \partial_{\delta}\Gamma^{\alpha}_{\beta\gamma} + \Gamma^{\alpha}_{\mu\gamma}\Gamma^{\mu}_{\beta\delta} - \Gamma^{\alpha}_{\mu\delta}\Gamma^{\mu}_{\beta\gamma}$$
 (29)

Ricci tensor

$$R_{\mu\nu} = R^{\lambda}_{\mu\lambda\nu} \tag{30}$$

In particular

$$\Gamma^i_{00} \to R^i_{0j0} = \partial_i \partial_j \phi \implies R^i_{0i0} = R_{00} = \vec{\nabla}^2 \phi$$
 (31)

Mass or energy density for slowly moving particle

$$T^{00} = \rho c^2 \tag{32}$$

• Geometric Interpretation of Newtonian Gravity From eq(26), we can write

$$R_{00} = \frac{4\pi G}{c^2} T_{00} \tag{33}$$

• The geometric formulation of Newton's gravity is summarised in the above set of equations (24) to (33).

- The geometric formulation of Newton's gravity is summarised in the above set of equations (24) to (33).
- In non-relativistic (NR) spacetime, there isn't a single non-degenerate spacetime metric. However, it's important to note that although we don't require a metric tensor $g_{\mu\nu}(x)$ to calculate curvature components $R^{\alpha}_{\ \beta\gamma\delta}$, having a connection $\Gamma^{\mu}_{\ \alpha\beta}$ is sufficient for calculating curvature.

- The geometric formulation of Newton's gravity is summarised in the above set of equations (24) to (33).
- In non-relativistic (NR) spacetime, there isn't a single non-degenerate spacetime metric. However, it's important to note that although we don't require a metric tensor $g_{\mu\nu}(x)$ to calculate curvature components $R^{\alpha}_{\ \beta\gamma\delta}$, having a connection $\Gamma^{\mu}_{\ \alpha\beta}$ is sufficient for calculating curvature.
- A geometric theory of non-relativistic Newtonian gravitation, with a covariant approach, emerged sometime after Einstein formulated his general theory of relativity. This was proposed by Cartan in 1923.
 Newton Cartan Geometry.

- The geometric formulation of Newton's gravity is summarised in the above set of equations (24) to (33).
- In non-relativistic (NR) spacetime, there isn't a single non-degenerate spacetime metric. However, it's important to note that although we don't require a metric tensor $g_{\mu\nu}(x)$ to calculate curvature components $R^{\alpha}_{\ \beta\gamma\delta}$, having a connection $\Gamma^{\mu}_{\ \alpha\beta}$ is sufficient for calculating curvature.
- A geometric theory of non-relativistic Newtonian gravitation, with a covariant approach, emerged sometime after Einstein formulated his general theory of relativity. This was proposed by Cartan in 1923.
 Newton Cartan Geometry.
- Here, we aim to delve into the geometric formulation of relativistic spacetime.

- The geometric formulation of Newton's gravity is summarised in the above set of equations (24) to (33).
- In non-relativistic (NR) spacetime, there isn't a single non-degenerate spacetime metric. However, it's important to note that although we don't require a metric tensor $g_{\mu\nu}(x)$ to calculate curvature components $R^{\alpha}_{\ \beta\gamma\delta}$, having a connection $\Gamma^{\mu}_{\ \alpha\beta}$ is sufficient for calculating curvature.
- A geometric theory of non-relativistic Newtonian gravitation, with a covariant approach, emerged sometime after Einstein formulated his general theory of relativity. This was proposed by Cartan in 1923.
 Newton Cartan Geometry.
- Here, we aim to delve into the geometric formulation of relativistic spacetime.
- This we now wish to rewrite $(R_{00} \sim T_{00})$ in a way that is covariant under general space-time coordinate transformations.

• Treating spacetime on an equal footing (part of configuration space):

$$t=t(\tau), x^i(\tau):=>x^\mu(\tau)=(ct(\tau), x^i(\tau))$$
 with $\tau=affine\ parameter\implies t=a\tau+b$

• Treating spacetime on an equal footing (part of configuration space):

$$t = t(\tau), x^{i}(\tau) :=> x^{\mu}(\tau) = (ct(\tau), x^{i}(\tau))$$

with $\tau = affine \ parameter \implies t = a\tau + b$

Equations in a covariant form

$$\frac{d^2x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\rho} \frac{dx^{\nu}}{d\tau} \frac{dx^{\rho}}{d\tau} = 0 \tag{34}$$

Treating spacetime on an equal footing (part of configuration space):

$$t = t(\tau), x^{i}(\tau) :=> x^{\mu}(\tau) = (ct(\tau), x^{i}(\tau))$$

with $\tau = affine \ parameter \implies t = a\tau + b$

Equations in a covariant form

$$\frac{d^2x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\rho} \frac{dx^{\nu}}{d\tau} \frac{dx^{\rho}}{d\tau} = 0 \tag{34}$$

Proper time associated with the metric

$$d\tau = \frac{ds}{c} = \frac{1}{c} \sqrt{g_{\mu\nu}(x) dx^{\mu} dx^{\nu}} \implies \frac{ds}{d\tau} = c$$

Treating spacetime on an equal footing (part of configuration space):

$$t = t(\tau), x^{i}(\tau) :=> x^{\mu}(\tau) = (ct(\tau), x^{i}(\tau))$$

with $\tau = affine \ parameter \implies t = a\tau + b$

• Equations in a covariant form

$$\frac{d^2x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\rho} \frac{dx^{\nu}}{d\tau} \frac{dx^{\rho}}{d\tau} = 0 \tag{34}$$

• Proper time associated with the metric

$$d\tau = \frac{ds}{c} = \frac{1}{c} \sqrt{g_{\mu\nu}(x) dx^{\mu} dx^{\nu}} \implies \frac{ds}{d\tau} = c$$

Geodesic equation from the action principle

$$I_{curved}^{particle} = -m_0 c \int d\tau \sqrt{g_{\mu\nu}(x(\tau))\dot{x}^{\mu}(\tau)\dot{x}^{\nu}(\tau)}$$
 (35)

$$\delta I_{curved}^{particle} = 0 \implies eq(6)$$
 where

$$\Gamma^{\mu}_{\nu\rho} = \frac{1}{2} g^{\sigma\beta} [\partial_{\alpha} g_{\mu\beta} + \partial_{\mu} g_{\beta\alpha} - \partial_{\beta} g_{\mu\alpha}] \tag{36}$$

The Einstein Equivalence Principle

- The effects of any gravitational field vanish in local inertial frames.
 - A single particle, doest not feel the GWs because of Einstein's equivalence principle (at least locally) (Ref: Book: Gravitation, M.T.W.)

The Einstein Equivalence Principle

- The effects of any gravitational field vanish in local inertial frames.
 - A single particle, doest not feel the GWs because of Einstein's equivalence principle (at least locally) (Ref: Book: Gravitation, M.T.W.)
 - To see the effect of the gravitational waves, we need to consider two massive particle and measure the geodesic deviation between them (relative motion of two particle along the neighboring geodesics)

The Einstein Equivalence Principle

- The effects of any gravitational field vanish in local inertial frames.
 - A single particle, doest not feel the GWs because of Einstein's equivalence principle (at least locally) (Ref: Book: Gravitation, M.T.W.)
 - To see the effect of the gravitational waves, we need to consider two massive particle and measure the geodesic deviation between them (relative motion of two particle along the neighboring geodesics)
- Geodesic deviation

$$\frac{D^2 q^{\mu}}{D\tau^2} = -R^{\mu}_{\nu\rho\sigma} q^{\rho} \frac{dx^{\nu}}{d\tau} \frac{dx^{\sigma}}{d\tau}$$
(37)

where q^{μ} is the vector connecting the corresponding point of adjacent geodesic $x^{\mu}.$

• Generalization of geometric form of Newton's law of gravitation

$$R_{00} = 4\pi G T_{00},$$

were we've set c=1 for brevity.

Covariant Form of law of gravitation in general relativistic spacetime

$$R_{\mu\nu} \sim T_{\mu\nu} \tag{38}$$

where $T_{\mu\nu} \implies Energy momentum tensor for the matter$

Generalization of geometric form of Newton's law of gravitation

$$R_{00} = 4\pi G T_{00},$$

were we've set c=1 for brevity.

Covariant Form of law of gravitation in general relativistic spacetime

$$R_{\mu\nu} \sim T_{\mu\nu} \tag{38}$$

where $T_{\mu\nu} \implies Energy momentum tensor for the matter$

Most general case

$$R_{\mu\nu} = AT_{\mu\nu} + Bg_{\mu\nu}T^{\alpha}_{\ \alpha} \tag{39}$$

with $T^{\alpha}_{\alpha} = g^{\alpha\beta}T_{\beta\alpha} \implies Trace \ of \ T_{\alpha\beta}$

Generalization of geometric form of Newton's law of gravitation

$$R_{00} = 4\pi G T_{00},$$

were we've set c=1 for brevity.

Covariant Form of law of gravitation in general relativistic spacetime

$$R_{\mu\nu} \sim T_{\mu\nu} \tag{38}$$

where $T_{\mu\nu} \implies Energy momentum tensor for the matter$

Most general case

$$R_{\mu\nu} = AT_{\mu\nu} + Bg_{\mu\nu}T^{\alpha}_{\ \alpha} \tag{39}$$

with $T^{\alpha}_{\ \alpha} = g^{\alpha\beta}T_{\beta\alpha} \implies Trace \ of \ T_{\alpha\beta}$

 Here the trace of the energy momentum tensor is, in the non-relativistic approximation:

$$T^{\alpha}_{\alpha} = T_{00} - T_{ii}$$

Generalization of geometric form of Newton's law of gravitation

$$R_{00} = 4\pi G T_{00},$$

were we've set c=1 for brevity.

Covariant Form of law of gravitation in general relativistic spacetime

$$R_{\mu\nu} \sim T_{\mu\nu} \tag{38}$$

where $T_{\mu\nu} \implies Energy momentum tensor for the matter$

Most general case

$$R_{\mu\nu} = AT_{\mu\nu} + Bg_{\mu\nu}T^{\alpha}_{\ \alpha} \tag{39}$$

with $T^{\alpha}_{\ \alpha} = g^{\alpha\beta}T_{\beta\alpha} \implies Trace \ of \ T_{\alpha\beta}$

• Here the trace of the energy momentum tensor is, in the non-relativistic approximation:

$$T^{\alpha}_{\alpha} = T_{00} - T_{ii}$$

Non-relativistic Limit and weak gravitation In our small region of space-time we write

Generalization of geometric form of Newton's law of gravitation

$$R_{00} = 4\pi G T_{00},$$

were we've set c=1 for brevity.

Covariant Form of law of gravitation in general relativistic spacetime

$$R_{\mu\nu} \sim T_{\mu\nu} \tag{38}$$

where $T_{\mu\nu} \implies Energy momentum tensor for the matter$

Most general case

$$R_{\mu\nu} = AT_{\mu\nu} + Bg_{\mu\nu}T^{\alpha}_{\ \alpha} \tag{39}$$

with $T^{\alpha}_{\ \alpha} = g^{\alpha\beta}T_{\beta\alpha} \implies Trace \ of \ T_{\alpha\beta}$

• Here the trace of the energy momentum tensor is, in the non-relativistic approximation:

$$T^{\alpha}_{\alpha} = T_{00} - T_{ii}$$

Non-relativistic Limit and weak gravitation In our small region of space-time we write

At non-relativistic Limit

$$R_{00} = (A+B)T_{00} - BT_{ii} (41)$$

It is important to realize that in the Newtonian limit, $T_{ii}=0$.

$$A + B = 4\pi G \tag{42}$$

At non-relativistic Limit

$$R_{00} = (A+B)T_{00} - BT_{ii} (41)$$

It is important to realize that in the Newtonian limit, $T_{ii} = 0$.

$$A + B = 4\pi G \tag{42}$$

Einstein tensor

$$G_{\mu\nu} = R_{\mu\mu} - \frac{1}{2}g_{\mu\nu}R = AT_{\mu\nu} - (B + \frac{1}{2}A)g_{\mu\nu}T^{\alpha}_{\ \alpha}$$

with $R=g^{\mu\nu}R_{\mu\nu}=(A+4B)T^{\alpha}_{\ \alpha}$

At non-relativistic Limit

$$R_{00} = (A+B)T_{00} - BT_{ii} (41)$$

It is important to realize that in the Newtonian limit, $T_{ii}=0$.

$$A + B = 4\pi G \tag{42}$$

Einstein tensor

$$G_{\mu\nu} = R_{\mu\mu} - \frac{1}{2}g_{\mu\nu}R = AT_{\mu\nu} - (B + \frac{1}{2}A)g_{\mu\nu}T^{\alpha}_{\ \alpha}$$

with
$$R=g^{\mu\nu}R_{\mu\nu}=(A+4B)T^{\alpha}_{\ \alpha}$$

Conservation of Einstein tensor and EM tensor

$$\nabla^{\mu}G_{\mu\nu} = 0 \implies (B + \frac{1}{2}A)\partial_{\nu}T^{\alpha}_{\alpha} = 0 \implies B = -\frac{A}{2}$$

At non-relativistic Limit

$$R_{00} = (A+B)T_{00} - BT_{ii} (41)$$

It is important to realize that in the Newtonian limit, $T_{ii}=0$.

$$A + B = 4\pi G \tag{42}$$

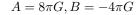
Einstein tensor

$$G_{\mu\nu} = R_{\mu\mu} - \frac{1}{2}g_{\mu\nu}R = AT_{\mu\nu} - (B + \frac{1}{2}A)g_{\mu\nu}T^{\alpha}_{\ \alpha}$$

with
$$R = g^{\mu\nu}R_{\mu\nu} = (A+4B)T^{\alpha}_{\alpha}$$

Conservation of Einstein tensor and EM tensor

$$\nabla^{\mu}G_{\mu\nu} = 0 \implies (B + \frac{1}{2}A)\partial_{\nu}T^{\alpha}_{\alpha} = 0 \implies B = -\frac{A}{2}$$



Linearized Gravitational Waves: General formulation

• Einstein Equation

$$R_{\mu\nu} = 8\pi G T_{\mu\nu} + \frac{1}{2} R g_{\mu\nu} \implies G_{\mu\nu} = 8\pi G T_{\mu\nu}$$
 (43)

• How would you define the energy-momentum tensor $T^{\mu\nu}(x)$?

$$T^{\mu\nu}(x,x(\tau)) = -\frac{2}{\sqrt{-g}} \frac{\delta I_{curved}^{particle}[x(\tau)]}{\delta g_{\mu\nu}(x)} = m_0 \int d\tau \dot{x}^{\mu}(\tau) \dot{x}^{\nu}(\tau) \frac{\delta^4(x-x(\tau))}{\sqrt{-g(x)}}$$
 with $q(x) = det(q_{\mu\nu}(x))$ (44)

Linearized/ Weak gravity

• <u>Gravitational Action</u> If the $T_{\mu\nu}=0$ is zero, that essentially corresponds to a vacuum, and the equation becomes

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 0$$

• Can we derive this the the action Principle?

$$S_g = \frac{1}{16\pi G} S_{EH} \tag{45}$$

with

$$S_{EH}[g_{\mu\nu}(x)] = \int d^4x \sqrt{-g}R, \tag{46}$$

Linearized version of GR

$$g_{\mu\nu}(x) = \eta_{\mu\nu} + h_{\mu\nu}(x); \mid h_{\mu\nu} \mid << 1$$
 (47)

 $\eta_{\mu\nu} \rightarrow Minkowski\ metric$

Linearized/ Weak gravity

• <u>Gravitational Action</u> If the $T_{\mu\nu}=0$ is zero, that essentially corresponds to a vacuum, and the equation becomes

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 0$$

• Can we derive this the the action Principle?

$$S_g = \frac{1}{16\pi G} S_{EH} \tag{45}$$

with

$$S_{EH}[g_{\mu\nu}(x)] = \int d^4x \sqrt{-g}R, \tag{46}$$

Linearized version of GR

$$g_{\mu\nu}(x) = \eta_{\mu\nu} + h_{\mu\nu}(x); \mid h_{\mu\nu} \mid << 1$$
 (47)

 $\eta_{\mu\nu} \rightarrow Minkowski\ metric$

Linearized/ Weak gravity

• <u>Gravitational Action</u> If the $T_{\mu\nu}=0$ is zero, that essentially corresponds to a vacuum, and the equation becomes

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 0$$

• Can we derive this the the action Principle?

$$S_g = \frac{1}{16\pi G} S_{EH} \tag{45}$$

with

$$S_{EH}[g_{\mu\nu}(x)] = \int d^4x \sqrt{-g}R, \tag{46}$$

Linearized version of GR

$$g_{\mu\nu}(x) = \eta_{\mu\nu} + h_{\mu\nu}(x); \mid h_{\mu\nu} \mid << 1$$
 (47)

 $\eta_{\mu\nu} \rightarrow Minkowski\ metric$

• The Christoffel connection and Riemann curvature in the linearized metric :

$$\Gamma^{\mu}_{\nu\sigma} = \frac{1}{2} \eta^{\mu\rho} (\partial_{\sigma} h_{\nu\rho} + \partial_{\nu} h_{\sigma\rho} - \partial_{\rho} h_{\nu\sigma} - \partial_{\sigma} \partial_{\lambda} h_{\nu\rho}) \tag{49}$$

$$R^{\mu}_{\rho\sigma\nu} = \frac{1}{2} \eta^{\mu\lambda} (\partial_{\sigma} \partial_{\rho} h_{\nu\lambda} - \partial_{\sigma} \partial_{\lambda} h_{\nu\rho} - \partial_{\rho} \partial_{\rho} h_{\sigma\lambda} + -\partial_{\nu} \partial_{\lambda} h_{\sigma\rho}) \tag{50}$$

• The Christoffel connection and Riemann curvature in the linearized metric :

$$\Gamma^{\mu}_{\nu\sigma} = \frac{1}{2} \eta^{\mu\rho} (\partial_{\sigma} h_{\nu\rho} + \partial_{\nu} h_{\sigma\rho} - \partial_{\rho} h_{\nu\sigma} - \partial_{\sigma} \partial_{\lambda} h_{\nu\rho}) \tag{49}$$

$$R^{\mu}_{\rho\sigma\nu} = \frac{1}{2} \eta^{\mu\lambda} (\partial_{\sigma} \partial_{\rho} h_{\nu\lambda} - \partial_{\sigma} \partial_{\lambda} h_{\nu\rho} - \partial_{\rho} \partial_{\rho} h_{\sigma\lambda} + -\partial_{\nu} \partial_{\lambda} h_{\sigma\rho})$$
 (50)

• S_{EH} upto $\mathcal{O}(h^2)$:

$$S_{EH} = \frac{1}{64\pi G} \int d^4x \left(h_{\mu\nu} \Box h^{\mu\nu} + 2h^{\mu\nu} \partial_{\mu} \partial_{\nu} h - h \Box h - 2h_{\mu\nu} \partial_{\rho} \partial^{\mu} h^{\nu\rho} \right)$$
 (51)

with $h = \eta^{\mu\nu} h_{\mu\nu}$.

• The Christoffel connection and Riemann curvature in the linearized metric :

$$\Gamma^{\mu}_{\nu\sigma} = \frac{1}{2} \eta^{\mu\rho} (\partial_{\sigma} h_{\nu\rho} + \partial_{\nu} h_{\sigma\rho} - \partial_{\rho} h_{\nu\sigma} - \partial_{\sigma} \partial_{\lambda} h_{\nu\rho}) \tag{49}$$

$$R^{\mu}_{\rho\sigma\nu} = \frac{1}{2} \eta^{\mu\lambda} (\partial_{\sigma} \partial_{\rho} h_{\nu\lambda} - \partial_{\sigma} \partial_{\lambda} h_{\nu\rho} - \partial_{\rho} \partial_{\rho} h_{\sigma\lambda} + -\partial_{\nu} \partial_{\lambda} h_{\sigma\rho})$$
 (50)

• S_{EH} upto $\mathcal{O}(h^2)$:

$$S_{EH} = \frac{1}{64\pi G} \int d^4x \left(h_{\mu\nu} \Box h^{\mu\nu} + 2h^{\mu\nu} \partial_{\mu} \partial_{\nu} h - h \Box h - 2h_{\mu\nu} \partial_{\rho} \partial^{\mu} h^{\nu\rho} \right)$$
 (51)

with $h = \eta^{\mu\nu} h_{\mu\nu}$.

• Symmetry of Linearized Gravity:

$$x^{\mu} \to \Lambda^{\mu}_{\nu} x^{\nu} + a^{\mu} (PT) \tag{52}$$

$$h_{\mu\nu} \to h_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu} \ (G.T.) \tag{53}$$

Here ξ_{μ} are completely arbitrary except that they are considered to be small.

• The Christoffel connection and Riemann curvature in the linearized metric :

$$\Gamma^{\mu}_{\nu\sigma} = \frac{1}{2} \eta^{\mu\rho} (\partial_{\sigma} h_{\nu\rho} + \partial_{\nu} h_{\sigma\rho} - \partial_{\rho} h_{\nu\sigma} - \partial_{\sigma} \partial_{\lambda} h_{\nu\rho}) \tag{49}$$

$$R^{\mu}_{\rho\sigma\nu} = \frac{1}{2} \eta^{\mu\lambda} (\partial_{\sigma} \partial_{\rho} h_{\nu\lambda} - \partial_{\sigma} \partial_{\lambda} h_{\nu\rho} - \partial_{\rho} \partial_{\rho} h_{\sigma\lambda} + -\partial_{\nu} \partial_{\lambda} h_{\sigma\rho})$$
 (50)

• S_{EH} upto $\mathcal{O}(h^2)$:

$$S_{EH} = \frac{1}{64\pi G} \int d^4x \left(h_{\mu\nu} \Box h^{\mu\nu} + 2h^{\mu\nu} \partial_{\mu} \partial_{\nu} h - h \Box h - 2h_{\mu\nu} \partial_{\rho} \partial^{\mu} h^{\nu\rho} \right)$$
 (51)

with $h = \eta^{\mu\nu} h_{\mu\nu}$.

• Symmetry of Linearized Gravity:

$$x^{\mu} \to \Lambda^{\mu}_{\nu} x^{\nu} + a^{\mu} (PT) \tag{52}$$

$$h_{\mu\nu} \to h_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu} \ (G.T.) \tag{53}$$

Here ξ_{μ} are completely arbitrary except that they are considered to be small.

• The field equations for $h^{\mu\nu}$ in vacuum :

$$\Box h^{\mu\nu} + \partial^{\mu}\partial_{\alpha}h^{\alpha\nu} + \partial^{\nu}\partial_{\alpha}h^{\alpha\mu} - \partial^{\mu}\partial^{\nu}h + \eta^{\mu\nu}(\Box h - \partial_{\alpha}\partial_{\beta}h^{\alpha\beta}) = 0.$$
 (54)

• Transverse-traceless (TT) gauge: The metric perturbation obeys

$$h_{0\mu} = 0, \ \partial^j h_{ij} = 0; \ h^\mu_{\ \mu} = 0$$
 (55)

• Transverse-traceless (TT) gauge: The metric perturbation obeys

$$h_{0\mu} = 0, \ \partial^j h_{ij} = 0; \ h^{\mu}_{\ \mu} = 0$$
 (55)

Gravitational Waves equation

$$\Box h_{\mu\nu}(x) = 0 \implies \Box h_{ij}(x) = 0 \tag{56}$$

• Transverse-traceless (TT) gauge: The metric perturbation obeys

$$h_{0\mu} = 0, \ \partial^j h_{ij} = 0; \ h^{\mu}_{\ \mu} = 0$$
 (55)

Gravitational Waves equation

$$\Box h_{\mu\nu}(x) = 0 \implies \Box h_{ij}(x) = 0 \tag{56}$$

Plane waves solutions

$$h_{ij}(x) = Re[\epsilon_{ij} \ e^{ikx}] \tag{57}$$

$$\partial^j h_{ij} = 0 \implies k^j \epsilon_{ij} = 0 \tag{58}$$

If we consider GWs propagating z direction, then we have

$$\mathcal{E} \equiv \{\varepsilon_{ij}\} = \begin{pmatrix} \epsilon_{+} & \epsilon_{\times} & 0\\ \epsilon_{\times} & -\epsilon_{+} & 0\\ 0 & 0 & 0 \end{pmatrix}_{ij}$$
(59)

Transverse-traceless (TT) gauge: The metric perturbation obeys

$$h_{0\mu} = 0, \ \partial^j h_{ij} = 0; \ h^{\mu}_{\ \mu} = 0$$
 (55)

Gravitational Waves equation

$$\Box h_{\mu\nu}(x) = 0 \implies \Box h_{ij}(x) = 0 \tag{56}$$

Plane waves solutions

$$h_{ij}(x) = Re[\epsilon_{ij} \ e^{ikx}] \tag{57}$$

$$\partial^j h_{ij} = 0 \implies k^j \epsilon_{ij} = 0 \tag{58}$$

If we consider GWs propagating z direction, then we have

$$\mathcal{E} \equiv \{\varepsilon_{ij}\} = \begin{pmatrix} \epsilon_{+} & \epsilon_{\times} & 0\\ \epsilon_{\times} & -\epsilon_{+} & 0\\ 0 & 0 & 0 \end{pmatrix}_{ij}$$
(59)

• Comment: Due to transversality condition, h_{ij} has non zero components in the x-y plane. And ϵ_+ and ϵ_x are called "+" $(h_{11}=-h_{22})$ and "×" polarization $(h_{12} = h_{21})$ of the GWs respectively.

Geodesic deviation

$$\frac{D^2 q^{\mu}}{D\tau^2} = -R^{\mu}_{\nu\rho\sigma} q^{\rho} \frac{dx^{\nu}}{d\tau} \frac{dx^{\sigma}}{d\tau} \tag{60}$$

where q^μ is the vector connecting the corresponding point of adjacent geodesic $x^\mu.$

Geodesic deviation

$$\frac{D^2 q^{\mu}}{D\tau^2} = -R^{\mu}_{\nu\rho\sigma} q^{\rho} \frac{dx^{\nu}}{d\tau} \frac{dx^{\sigma}}{d\tau} \tag{60}$$

where q^{μ} is the vector connecting the corresponding point of adjacent geodesic x^{μ} .

NR test particles: slow velocity ff we consider slowly moving test particles $\implies \frac{dx^{\nu}}{d\tau} = U^{\mu} \sim (c,0,0,0) + \mathcal{O}(h). \text{ As slowly moving particle we have } d\tau = dt. \text{ In NR limit, spatial components of the separation four vector} q^{\mu} \text{ reduce to}:$

$$\frac{d^2q^i}{dt^2} = -c^2 R^i_{0k0} q^k {61}$$

Geodesic deviation

$$\frac{D^2 q^{\mu}}{D\tau^2} = -R^{\mu}_{\nu\rho\sigma} q^{\rho} \frac{dx^{\nu}}{d\tau} \frac{dx^{\sigma}}{d\tau} \tag{60}$$

where q^{μ} is the vector connecting the corresponding point of adjacent geodesic x^{μ} .

• NR test particles: slow velocity If we consider slowly moving test particles $\implies \frac{dx^{\nu}}{d\tau} = U^{\mu} \sim (c,0,0,0) + \mathcal{O}(h). \text{ As slowly moving particle we have } d\tau = dt. \text{ In NR limit, spatial components of the separation four vector} q^{\mu} \text{ reduce to}:$

$$\frac{d^2q^i}{dt^2} = -c^2 R^i_{0k0} q^k {61}$$

• At TT gauge :

$$\frac{d^2q_i}{dt^2} = \frac{1}{2}\ddot{h}_{ij}q_j; \quad i, j = 1, 2, 3$$
 (62)

Geodesic deviation

$$\frac{D^2 q^{\mu}}{D\tau^2} = -R^{\mu}_{\nu\rho\sigma} q^{\rho} \frac{dx^{\nu}}{d\tau} \frac{dx^{\sigma}}{d\tau} \tag{60}$$

where q^{μ} is the vector connecting the corresponding point of adjacent geodesic x^{μ} .

 NR test particles: slow velocity If we consider slowly moving test particles $\implies \frac{dx^{\nu}}{d\tau} = U^{\mu} \sim (c,0,0,0) + \mathcal{O}(h)$. As slowly moving particle we have d au=ar dt . In NR limit, spatial components of the separation four vector q^μ reduce to :

$$\frac{d^2q^i}{dt^2} = -c^2 R^i_{0k0} q^k {61}$$

 \bullet At TT gauge:

$$\frac{d^2q_i}{dt^2} = \frac{1}{2}\ddot{h}_{ij}q_j; \quad i, j = 1, 2, 3$$
 (62)

- Long wavelength approximation limit:
 - GWs propagating along x_3 direction $\implies h_{ij} \neq 0$ for i, j = 1, 2.
- ullet Long wavelength limit: $e^{i \vec{k}. \vec{x}} \sim 1 \implies$ GWs can then treated as a function of time only:

Interaction between particles and GWs

Observation

• At TT gauge, long wavelength approximation, the whole analysis effectively is described by Newtonian mechanics. And the components of gravitational waves in TT gauge which produces a "tidal" effect in the equation of motion of the given mass.

Interaction between particles and GWs

Observation

• At TT gauge, long wavelength approximation, the whole analysis effectively is described by Newtonian mechanics. And the components of gravitational waves in TT gauge which produces a "tidal" effect in the equation of motion of the given mass.

Mechanical detector

Consider GWs incident on a detector (composed of two masses in presence of interacting via a mechanical potential):

If GWs propagate along the direction normal to the oscillating plane.

$$m\frac{d^{2}q_{i}}{dt^{2}} = \frac{m}{2}\ddot{h}_{ij}(t)q_{j} + \partial_{i}V(q_{i}) \quad i, j = 1, 2$$
(63)

with $V(q_i) => external \ potential$

Interaction between particles and GWs

Observation

• At TT gauge, long wavelength approximation, the whole analysis effectively is described by Newtonian mechanics. And the components of gravitational waves in TT gauge which produces a "tidal" effect in the equation of motion of the given mass.

Mechanical detector

Consider GWs incident on a detector (composed of two masses in presence of interacting via a mechanical potential):

If GWs propagate along the direction normal to the oscillating plane.

$$m\frac{d^{2}q_{i}}{dt^{2}} = \frac{m}{2}\ddot{h}_{ij}(t)q_{j} + \partial_{i}V(q_{i}) \quad i, j = 1, 2$$
(63)

with $V(q_i) => external \ potential$

Lagrangian

$$L = \frac{1}{2}m\dot{q}_i^2 - \frac{1}{2}m\dot{h}_{jk}(t)\dot{q}_jq_k - V(q_i)$$
(64)

Hamiltonian

$$H_{ho\ gw} = \frac{1}{2m} (p_j + \frac{1}{2} m \dot{h}_{jk} q_k)^2 + V(q_i) \tag{65}$$

 We indicate that Newtonian gravity itself can be interpreted geometrically in the context of non-relativistic spacetime.

- We indicate that Newtonian gravity itself can be interpreted geometrically in the context of non-relativistic spacetime.
- Newtonian Gravity to Einstein Gravitation

$$\overrightarrow{\nabla}^2 \phi = 4\pi G \rightarrow \underbrace{R_{00} = (4\pi G) T_{00} \rightarrow}_{Newtonian \ Gravity} \underbrace{R_{\mu\nu} = (8\pi G) T_{\mu\nu}}_{Geometrical \ form \ of \ Newtonian \ Gravity} \underbrace{G_{\mu\nu} = (8\pi G) T_{\mu\nu}}_{Einstein's \ gravity}$$

- We indicate that Newtonian gravity itself can be interpreted geometrically in the context of non-relativistic spacetime.
- Newtonian Gravity to Einstein Gravitation

$$\vec{\nabla}^2 \phi = 4\pi G \rightarrow \underbrace{R_{00} = (4\pi G) T_{00} \rightarrow}_{Newtonian\ Gravity} \underbrace{G_{\mu\nu} = (8\pi G) T_{\mu\nu}}_{Geometrical\ form\ of\ Newtonian\ Gravity} \underbrace{G_{\mu\nu} = (8\pi G) T_{\mu\nu}}_{Einstein's\ gravity}$$

 Gravitational waves can be viewed as the vacuum solution of the linearized Einstein equations in the transverse-traceless (TT) gauge, representing a distortion of flat spacetime when observed far away from the source.

- We indicate that Newtonian gravity itself can be interpreted geometrically in the context of non-relativistic spacetime.
- Newtonian Gravity to Einstein Gravitation

$$\overset{\nabla}{\nabla}^{2}\phi = 4\pi G \to \underbrace{R_{00} = (4\pi G)T_{00} \to}_{Newtonian\ Gravity} \qquad \underbrace{G_{\mu\nu} = (8\pi G)T_{\mu\nu}}_{Einstein's\ gravity}$$

- Gravitational waves can be viewed as the vacuum solution of the linearized Einstein equations in the transverse-traceless (TT) gauge, representing a distortion of flat spacetime when observed far away from the source.
- We've developed a mechanical model that allows us to analyze the interaction between neutral particles and gravitational waves.

THANK YOU!