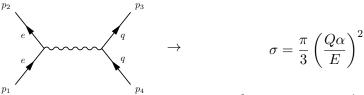
Introduction to Elementary Particle Physics

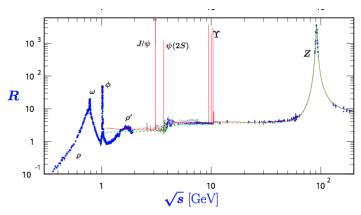
4 (a): Evidence for colour


Dr. Sahal Yacoob

1 September 2020

Colour Charge

Most direct evidence of colour comes from $R \equiv \frac{\sigma(ee \to hadrons)}{\sigma(ee \to \mu\mu)}$.


where Q is the charge in units of $e\left(\frac{2}{3} \text{ for } u,c,t \text{ and } -\frac{1}{3} \text{ for } d,s,b\right)$

- ightharpoonup if $E < 2m_q$, quark production is kinematically forbidden
- $ightharpoonup \sigma$ increases when heavier quarks are energetically allowed

If we assume quarks carry 3 colours: $R(E)=3\sum Q_i^2$

$$R \ \to \ \underbrace{3\left[\left(\frac{2}{3}\right)^2 + 2(-\frac{1}{3})^2 \right]}_{2 \text{ for } E < 2m_c} \ \to \ \underbrace{3\left[2(\frac{2}{3})^2 + 2(-\frac{1}{3})^2 \right]}_{3.33 \text{ for } E < 2m_b} \ \to \ \underbrace{3\left[2(\frac{2}{3})^2 + 3(-\frac{1}{3})^2 \right]}_{3.67 \text{ for } E < 2m_t}$$

R does not describe hadronic resonances, but:

- ▶ the factor of 3 is clearly needed to describe data
- strong evidence of quarks carrying 3 colours

Introduction to Elementary Particle Physics

4 (b): Neutrinos (the little neutral particles)

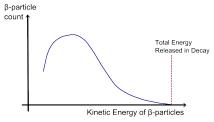
Dr. Sahal Yacoob

1 September 2020

The Little Neutral Particle

A quick reminder, or maybe first introduction to neutrinos.

- Neutrino's are very light $0 < m_{\nu} < 2.3$ eV EM neutral leptons
- They only interact via the weak interaction (no colour charge either)
- ► They were postulated due to beta decay seemingly exhibiting non conservation in angular momentum and energy.


The Little Neutral Particle – Discovery

- ▶ Beta Decay initially thought, and observed to be: $p \rightarrow n + e^+$.
 - We now know it is really (at a fundamental level) $u \rightarrow d + e^+ + \bar{\nu}_e$.
- Energy Consideration:
 - ▶ Consider $p \rightarrow n + e^+$ (no neutrino).
 - If the proton and neutron are both at rest then we expect the positron to have a well defined energy $E=m_p-m_n$.
- Angular Momentum Consideration:
 - The angular momentum of a nucleus is integer for an even number of nucleons, and half-integer for an odd number of nucleons (since protons and neutrons have half-integer spin).
 - ho-decay doesn't change the number of nucleons, but the electron has spin 1/2. This is an apparent violation of conservation of spin / angular momentum.

The Little Neutral Particle – Discovery

- ▶ Beta Decay initially thought, and observed to be: $p \rightarrow n + e^+$.
 - We now know it is really (at a fundamental level) $u \rightarrow d + e^+ + \bar{\nu}_e$.
- Energy Consideration:
 - ▶ Consider $p \rightarrow n + e^+$ (no neutrino).
 - If the proton and neutron are both at rest then we expect the positron to have a well defined energy $E=m_p-m_n$.

Solar Neutrino Problem

The pp Chain

Step 1: Two protons make a deuteron

$$p + p \rightarrow d + e^+ + \nu_e$$

 $p + p + e^- \rightarrow d + \nu_e$

Step 2: Deuteron plus proton makes ³He.

$$d + p \rightarrow {}^{3}\text{He} + \gamma$$

Step 3: Helium-3 makes alpha particle or 7Be.

$$^{3}\text{He} + p \rightarrow \alpha + e^{+} + \nu_{e}$$

 $^{3}\text{He} + ^{3}\text{He} \rightarrow \alpha + p + p$
 $^{3}\text{He} + \alpha \rightarrow ^{7}\text{Be} + \gamma$

Step 4: Berillium makes alpha particles.

7
Be + e^{-} → 7 Li + ν_{e}
 7 Li + p → α + α
 7 Be + p → 8 B + γ
 8 B → 8 Be* + e^{+} + ν_{e}

many ν_e 's created

Ray Davies, Homestake mine, 1968 $\nu_e + ^{37}Cl \rightarrow ^{37}Ar + e$ solar ν_e flux is 1/3 of predicted value

Neutrino Mixing

Experimental limits on neutrino mass: $0 \leq m_{\bar{\nu}_e} < 2.3\,eV$

If $m_{\nu} > 0$, neutrino mixing is possible, in which case

flavour eigenstates:

$$(\nu_e, \ \nu_\mu, \ \nu_\tau)$$

- definite coupling to e, μ, τ
- indefinite masses

mass eigenstates:

$$(\nu_1, \ \nu_2, \ \nu_3)$$

- definite masses m_1, m_2, m_3
- ▶ indefinite coupling to e, μ, τ

Therefore, a neutrino would be a quantum mixing of the mass and flavour eigenstates. Neutrinos would therefore

- interact as flavour eigenstates
- propagate as mass eigenstates

Neutrino Oscillations

Consider the case with just two neutrino species, with flavour eigenstates (ν_e, ν_μ) and mass eigenstates (ν_1, ν_2) .

$$\nu_e = \nu_1 \cos \theta_{12} + \nu_2 \sin \theta_{12}
\nu_\mu = -\nu_1 \sin \theta_{12} + \nu_2 \cos \theta_{12}$$

- ightharpoonup using \sin and \cos just helps the normalization
- \blacktriangleright the *mixing angle*, θ_{12} must be determined experimentally

If we start with a pure ν_e state with momentum ${f p}$,

$$|\nu_e, \mathbf{p}\rangle = |\nu_1, \mathbf{p}\rangle \cos \theta_{12} + |\nu_2, \mathbf{p}\rangle \sin \theta_{12}$$

let it evolve for time t, note that ν_1 and ν_2 are the mass eigenstates

$$|\nu_e, \mathbf{p}\rangle \to e^{-iE_1t/\hbar} |\nu_1, \mathbf{p}\rangle \cos\theta_{12} + e^{-iE_2t/\hbar} |\nu_2, \mathbf{p}\rangle \sin\theta_{12}$$

So the neutrino is no longer a pure ν_e state,

Neutrino Oscillations

The evolved state can be written

$$A(t) |\nu_e, \mathbf{p}\rangle + B(t) |\nu_\mu, \mathbf{p}\rangle$$

where

$$A(t) = e^{-iE_1 t/\hbar} \cos^2 \theta_{12} + e^{-iE_2 t/\hbar} \sin^2 \theta_{12} \qquad B(t) = \sin \theta_{12} \cos \theta_{12} \left[e^{-iE_1 t/\hbar} - e^{-iE_2 t/\hbar} \right]$$

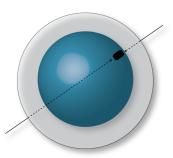
So the probability of finding a ν_{β} state is

$$P(\nu_e \to \nu_\mu) = |B(t)|^2 = \sin^2(2\theta_{12}) \sin^2\left[\frac{(E_2 - E_1)t}{2\hbar}\right]$$

Therefore, if $\theta_{12} \neq 0$ and $m_1 \neq m_2$ (which would mean that $E_1 \neq E_2$ because ${\bf p}$ is defined) then the neutrino flavour will oscillate. If $m_1=m_2=0$ oscillations are not possible.

Using $E_{i,j}\gg m_{i,j}$, and $t\approx L/c$,

$$P(\nu_e \to \nu_\mu) \approx \sin^2(2\theta_{12}) \sin^2(L/L_0)$$
 with $L_0 = \frac{4E(\hbar c)}{(m_2^2 - m_1^2)(c^4)}$

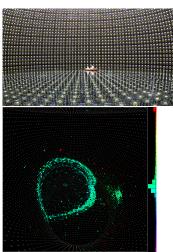

Atmospheric Muon Neutrinos

Cosmic ray protons hitting the atmosphere produce pions (π^{\pm}) .

$$\pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu_\mu}$$

$$\qquad \qquad \pi^- \to \mu^- + \bar{\nu_\mu} \to e^- + \bar{\nu_e} + \nu_\mu$$

This suggests the muon to electron neutrino ratio should be 2 to 1.

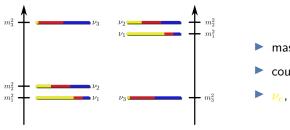

- cosmic proton flux is isotropic
- place detector near surface of earth
- observe the muon to electron neutrino ratio coming above vs below
- ▶ no oscillations: expect 2:1 above, 2:1 below
- ▶ oscillations: expect 2:1 above, ~?:1 below

Evidence for Neutrino Oscillations

Super-Kamiokande (1998)

Observed 2:1 above and \sim 1:1 below, so neutrino oscillation hypothesis supported. Some recent Super-K news here

Neutrino Oscillation Parameters


Neutrino beam-line experiments confirm the oscillation and measure neutrino oscillation parameters.

Oscillation length, L_0 , depends on squared mass difference:

$$\Delta(m_{12}^2) \equiv m_1^2 - m_2^2$$

Experimental values yield

$$1.9 \times 10^{-3} \lesssim \Delta(m_{32}^2) \lesssim 3.0 \times 10^{-3} \, eV^2$$
, and $\sin^2(2\theta_{23}) \gtrsim 0.9$
 $7.6 \times 10^{-5} \lesssim \Delta(m_{21}^2) \lesssim 8.6 \times 10^{-5} \, eV^2$, and $0.32 \lesssim \tan^2(\theta_{12}) \lesssim 0.48$

- mass hierarchy is not known
- could be 'normal' or 'inverted'
- $\triangleright \nu_e, \nu_\mu, \nu_\tau$

Solving the solar Neutrino Problem

The Sudbury Neutrino Observatory¹ definitively established that neutrinos change flavour, and therefore must have mass.

CC Charged Current Reaction	$v_e + d \rightarrow p + p + e^-$	$E_{threshold} = 1.4 MeV$
NC Neutral Current Reaction	$v_x + d \rightarrow v_x + p + n$	$E_{threshold} = 2.2 MeV$
ES Elastic Scattering Reaction	$v_x + e^- \rightarrow v_x + e^-$	$E_{threshold} \approx 0$

x denotes that this reaction will take place with any neutrino.

Unification

Maxwell unified electricity and magnetism into electromagnetism

Glashow, Weinberg, and Salam (GSW) unified electromagnetism and weak forces, called *electroweak* (EWK). The *Higgs boson* is a prediction of EWK theory.

A *Grand Unified Theory* (GUT) would combine EWK and QCD, but so far there is no experimental evidence for a GUT.

Unification of gravity with a GUT is the ultimate unification. *String theory* is currently the most promising approach - but far from experimentally testable.

Questions Beyond the Standard Model

Grand Unification

Why is there no antimatter in the universe?

What is Dark Matter/Energy?