Mainly Based on joint works:

- *G. K., S. Ajisaka, K. Watanabe, Open Syst. Inform. Dynam. 24, 1-8 (2017).
- *D. Chruscinski, R. Fujii, G. K., H. Ohno, Linear Algebra Appl. 630, 293-305 (2021).

Universal constraint for relaxation rates of quantum dynamical semigroups

Part II: Based on r-function approach

2021.10.15. Two Day Workshop to celebrate the 60th anniversary of the paper on dynamical maps by E.C.G. Sudarshan, P. M. Mathews and J. Rau

Gen Kimura (Shibaura Institute of Technology)

Mainly Based on joint works:

- *G. K., S. Ajisaka, K. Watanabe, Open Syst. Inform. Dynam. 24, 1-8 (2017).
- *D. Chruscinski, R. Fujii, G. K., H. Ohno, Linear Algebra Appl. 630, 293-305 (2021).

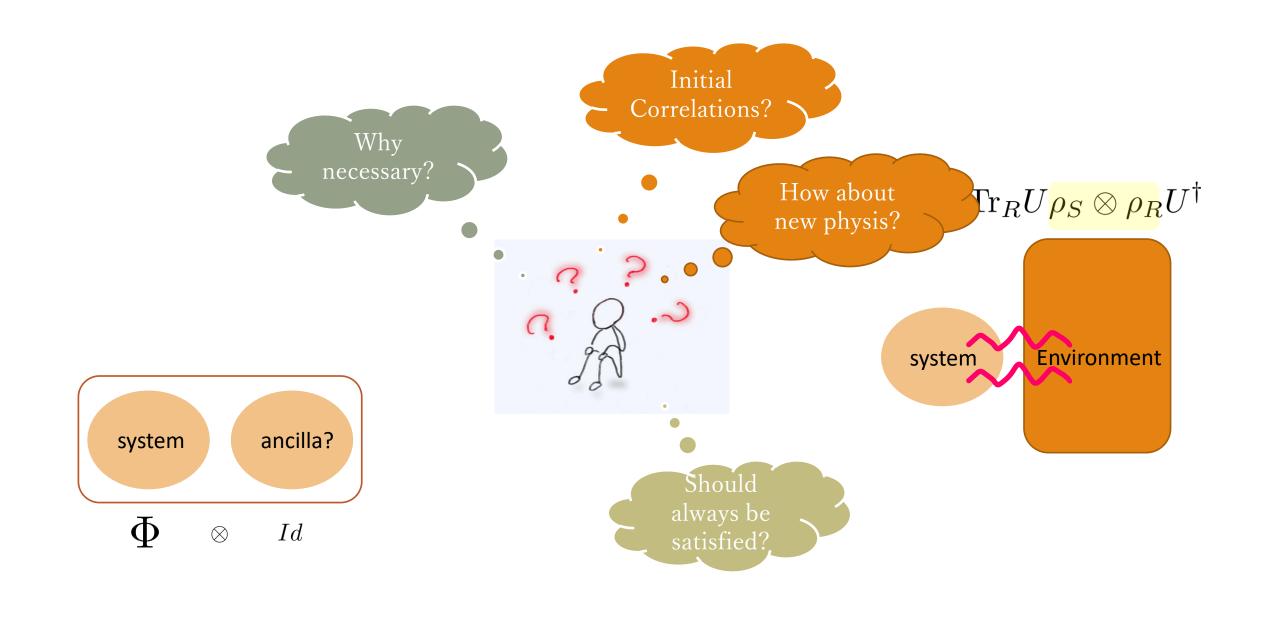
Universal constraint for relaxation rates of quantum dynamical semigroups

Part II: Based on r-function approach

2021.10.15. Two Day Workshop to celebrate the 60th anniversary of the paper on dynamical maps by E.C.G. Sudarshan, P. M. Mathews and J. Rau

Gen Kimura (Shibaura Institute of Technology)

Why we need completely positivity condition?



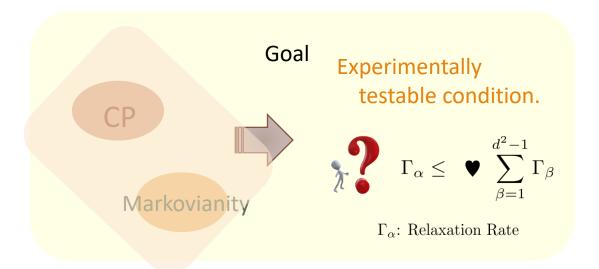
George would never take a postulate for granted.

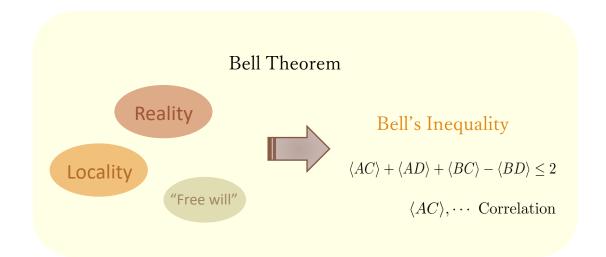
quoted by Prof. Pascazios slide yesterday

According to the discipline of natural science, the validity of a theory is ultimately determined by experiment.

Physics of CP condition!

According to the discipline of natural science, the validity of a theory is ultimately determined by experiment.





⇔ Quantum Dynamical Semigroup

Quantum dynamical semigroup.. General Markovian CP quantum dynamics

- 1) Completely Positive Trace Preserving Map $\rho \mapsto \rho_t = \Lambda_t \rho$
- 2) One parameter (time) Dynamical Semigroup $\Lambda_{t+s} = \Lambda_t \Lambda_s \ (\forall t, s \geq 0)$

Hille-Yoshida (1948)

$$ightharpoonup rac{d
ho}{dt} = \mathcal{L}
ho$$
 s.t. $\Lambda_t = \exp(t\mathcal{L})$

[Thm] (GKLS 1976) Generator of quantum dynamical semigroup is always written

$$\mathcal{L} = \mathcal{H} + \mathcal{D} \qquad \begin{cases} * \text{ Hamiltonian Part} & \text{ (effective) Hamiltonian} \\ \mathcal{H}(\rho) = -i[H, \rho] & \text{where} \quad H = H^{\dagger} \end{cases}$$

$$* \text{ Dissipative Part:} \qquad \tilde{L}_k := \sqrt{\gamma_k} L_k \qquad L_k : \text{ Jump/Noise Operator}$$

$$\mathcal{D}(\rho) = \frac{1}{2} \sum_k \gamma_k (2L_k \rho L_k^{\dagger} - L_k^{\dagger} L_k \rho - \rho L_k^{\dagger} L_k) \quad \text{where} \quad \gamma_k \geq 0$$

Quantum dynamical semigroup.. General Markovian CP quantum dynamics

- 1) Completely Positive Trace Preserving Map $\rho \mapsto \rho_t = \Lambda_t \rho$
- 2) One parameter (time) Dynamical Semigroup $\Lambda_{t+s} = \Lambda_t \Lambda_s \ (\forall t, s \geq 0)$

Hille-Yoshida (1948)

$$ightharpoonup rac{d
ho}{dt} = \mathcal{L}
ho$$
 s.t. $\Lambda_t = \exp(t\mathcal{L})$

[Thm] (GKLS 1976) Generator of quantum dynamical semigroup is always written

$$\mathcal{L} = \mathcal{H} + \mathcal{D} \qquad \begin{cases} * \text{ Hamiltonian Part} & \text{ (effective) Hamiltonian} \\ \mathcal{H}(\rho) = -i[H, \rho] & \text{ where } \quad H = H^{\dagger} \end{cases}$$

$$* \text{ Dissipative Part: } \qquad \tilde{L}_k := \sqrt{\gamma_k} L_k \qquad L_k : \text{ Jump/Noise Operator}$$

$$\mathcal{D}(\rho) = \frac{1}{2} \sum_k (2\tilde{L}_k \rho \tilde{L}_k^{\dagger} - \tilde{L}_k^{\dagger} \tilde{L}_k \rho - \rho \tilde{L}_k^{\dagger} \tilde{L}_k) \quad \text{where } \quad \gamma_k \geq 0$$

Quantum dynamical semigroup.. General Markovian CP quantum dynamics

- 1) Completely Positive Trace Preserving Map $\rho \mapsto \rho_t = \Lambda_t \rho$
- 2) One parameter (time) Dynamical Semigroup $\Lambda_{t+s} = \Lambda_t \Lambda_s \ (\forall t, s \geq 0)$

Hille-Yoshida (1948)

$$ightharpoonup rac{d
ho}{dt} = \mathcal{L}
ho$$
 s.t. $\Lambda_t = \exp(t\mathcal{L})$

[Thm] (GKLS 1976) Generator of quantum dynamical semigroup is always written

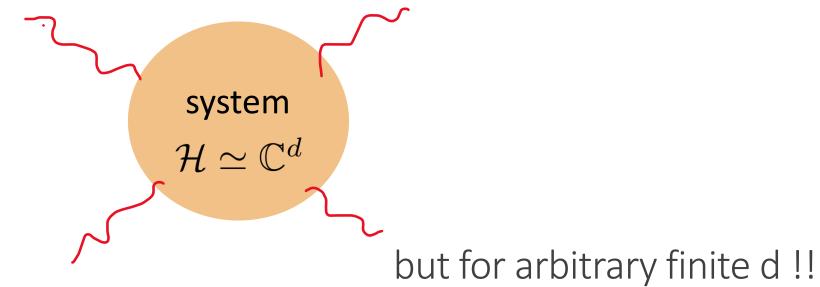
$$\mathcal{L} = \mathcal{H} + \mathcal{D}$$

$$\mathcal{L} = \mathcal{H} + \mathcal{D}$$
 * Hamiltonian Part
$$\mathcal{H}(\rho) = -i[H, \rho] \quad \text{where} \quad H = H^{\dagger}$$
 * Dissipative Part:
$$L_k: \text{ Jump/Noise Opera}$$

$$L_k$$
: Jump/Noise Operator

$$\mathcal{D}(\rho) = \frac{1}{2} \sum_{k} (2L_k \rho L_k^{\dagger} - L_k^{\dagger} L_k \rho - \rho L_k^{\dagger} L_k) \quad \text{tr } L_k = 0$$

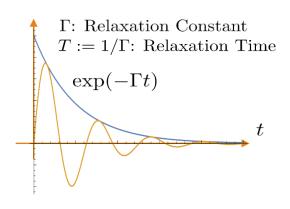
In this work, we restrict ourself to a d-level quantum system



Physics of GKLS Master equation

We focus on Relaxation Times!

Time Evolution of any physical quantities



Decaying time determined by Eigenvalues of Generator: $\mathcal{L}u_{\alpha}=\lambda_{\alpha}u_{\alpha} \ (u_{\alpha}\neq 0)$

$$\lambda_0=0$$
 & $\lambda_lpha=-\Gamma_lpha+i\omega_lpha$ $(lpha=1,\ldots,d^2-1)$

$$\Gamma_{\alpha} := -\text{Re}\lambda_{\alpha}$$
 Relaxation Rates

$$T_{lpha}:=1/\Gamma_{lpha}$$
 Relaxation Times

Main Results: r-function approach

[Theorems] For any d-level GKLS master equation,

$$\Gamma_{\alpha} \leq \frac{1 + \sqrt{2(1 - \frac{1}{d})}}{2d} \sum_{\beta=1}^{d^2 - 1} \Gamma_{\beta} \leq \frac{1 + \sqrt{2}}{2d} \sum_{\beta=1}^{d^2 - 1} \Gamma_{\beta} \leq \frac{\sqrt{2}}{d} \sum_{\beta=1}^{d^2 - 1} \Gamma_{\beta}$$

Neceesary condition for CP condition and Markovianity testable by experiments

r stand for "relaxation"

[Definition] (r-function) For complex matrices $A, B \in M_d(\mathbb{C})$, we define

$$r(A,B) := \frac{1}{2}\operatorname{tr}(A^{\dagger}AB^{\dagger}B + AA^{\dagger}B^{\dagger}B - A^{\dagger}BAB^{\dagger} - BA^{\dagger}B^{\dagger}A)$$

$$r(A,B) = \frac{1}{2}\operatorname{tr}(\{A,A^{\dagger}\}B^{\dagger}B) - \Re\operatorname{tr}(A^{\dagger}BAB^{\dagger}), \qquad \text{Commutator} \\ = \frac{1}{2}(\langle [B,A]|BA\rangle + \langle [B,A^{\dagger}]|BA^{\dagger}\rangle), \qquad [A,B] := AB - BA \quad \{A,B\} := AB + BA \\ = \frac{1}{2}(\|[A,B]\|^2 + \operatorname{tr}A^{\dagger}A[B^{\dagger},B]) \qquad \qquad \text{Hilbert-Schmidt Inner Prod.} \qquad \text{Frobenius (Hilbert-Schmidt) Norm} \\ = \frac{1}{2}(\|[A,B]\|^2 + \operatorname{tr}A^{\dagger}A[B^{\dagger},B]) \qquad \qquad \langle A,B\rangle := \operatorname{tr}A^{\dagger}B \qquad \|A\| := \sqrt{\operatorname{tr}A^{\dagger}A}$$

Properties of r-function

- Unitry Invariance: $r(UAU^{\dagger}, UBU^{\dagger}) = r(A, B)$
- $r(\alpha A, \beta B) = |\alpha|^2 |\beta|^2 r(A, B)$
- For Cartesian decomposition $A = A_R + iA_I$,

$$r(A,B) = r(A_R,B) + ir(A_I,B)$$

[Lemma 1]
$$\sum_{\alpha=1}^{n-1} \Gamma_{\alpha} = d \sum_{\alpha=1}^{n} \|L_k\|^2$$

 $\alpha = 1$

Frobenius Norm:

$$||A|| := \sqrt{\operatorname{tr} A^{\dagger} A}$$

Complex Eigenvalues appears as conjugate pair & leading eigenvalue 0

$$\sum_{\alpha=1}^{d^2-1} \Gamma_{\alpha} = -\sum_{\alpha=0}^{d^2-1} \lambda_{\alpha} = -\text{tr}\mathcal{L}$$
 $\mathcal{L}u_{\alpha} = \lambda_{\alpha}u_{\alpha} \ (u_{\alpha} \neq 0)$

$$\operatorname{tr} \mathcal{L} = -d \sum_k \|L_k\|^2$$
 Wolf and Cirac (2008)

Tensor rep. (c.f. Prof. Lakshminarayan talk yesterday) and $Tr L_k = 0$

$$\mathcal{L}(\rho) = -i[H, \rho] + \frac{1}{2} \sum_{k} (2L_{k}\rho L_{k}^{\dagger} - L_{k}^{\dagger} L_{k}\rho - \rho L_{k}^{\dagger} L_{k})$$

$$\mapsto \hat{\mathcal{L}} = -i(I \otimes H - H^{T} \otimes I) + \frac{1}{2} \sum_{k} (2\overline{L_{k}} \otimes L_{k} - \mathbb{I} \otimes L_{k}^{\dagger} L_{k} - L_{k}^{T} \overline{L_{k}} \otimes \mathbb{I})$$

[Lemma 2]
$$\Gamma_{\alpha} = \frac{1}{\|u_{\alpha}\|^2} \sum_k r(u_{\alpha}, L_k) \qquad \mathcal{L}u_{\alpha} = \lambda_{\alpha} u_{\alpha} \; (u_{\alpha} \neq 0)$$

$$\mathcal{L}u_{\alpha} = \lambda_{\alpha}u_{\alpha} \ (u_{\alpha} \neq 0)$$

Reason why we call r-function!

- Re
$$\operatorname{tr} \left(u_{\alpha}^{\dagger} \times \lambda_{\alpha} u_{\alpha} = \mathcal{L}(u_{\alpha}) = -i[H, u_{\alpha}] + \frac{1}{2} \sum_{k} (2L_{k}u_{\alpha}L_{k}^{\dagger} - L_{k}^{\dagger}L_{k}u_{\alpha} - u_{\alpha}L_{k}^{\dagger}L_{k}) \right)$$

$$\Gamma_{\alpha} = \frac{1}{2||u_{\alpha}||^{2}} \sum_{k} \operatorname{tr}(u_{\alpha}^{\dagger} u_{\alpha} L_{k}^{\dagger} L_{k} + u_{\alpha} u_{\alpha}^{\dagger} L_{k}^{\dagger} L_{k} - u_{\alpha}^{\dagger} L_{k} u_{\alpha} L_{k}^{\dagger} - L_{k} u_{\alpha}^{\dagger} L_{k}^{\dagger} u_{\alpha})$$

$$= \frac{1}{||u_{\alpha}||^{2}} \sum_{k} r(u_{\alpha}, L_{k})$$

$$\Gamma_{\alpha} := -\operatorname{Re}\lambda_{\alpha} \& ||u_{\alpha}||^{2} = \operatorname{tr}u_{\alpha}^{\dagger} u_{\alpha}$$

[Proposition 3] $r(A, B) \le c(d) ||A||^2 ||B||^2$

 \Rightarrow For any GKLS master eq., $\Gamma_{\alpha} \leq \frac{c(d)}{d} \sum_{\beta} \Gamma_{\beta}$

$$\begin{split} \text{[Lemma 2]} & \quad \Gamma_{\alpha} = \frac{1}{\|u_{\alpha}\|^2} \sum_{k} r(u_{\alpha}, L_k) \\ & \leq c(d) \sum_{k} \|L_k\|^2 \\ & = \frac{c(d)}{d} \sum_{\beta} \Gamma_{\beta} \qquad \leftarrow \text{[Lemma 1]} \ \sum_{\beta=1}^{d^2-1} \Gamma_{\beta} = d \sum_{k} \|L_k\|^2 \end{split}$$

[Prop. 4] For any matrices A, B,
$$c(d)$$

$$r(A,B) \leq \sqrt{2}||A||^2||B||^2$$

$$\begin{aligned} \text{Proof.} \quad & r(A,B) = \frac{1}{2} (\langle [B,A] | BA \rangle + \langle [B,A^{\dagger}] | BA^{\dagger} \rangle) \\ & \leq \frac{1}{2} (\| [B,A] \| \| B \| \| A \| + \| [B,A^{\dagger}] \| \| B \| \| A^{\dagger} \| \\ & \leq \sqrt{2} \| A \|^2 \| B \|^2 \qquad \| \| [A,B] \|^2 \leq 2 \| A \|^2 \| B \|^2 \end{aligned} \qquad \text{(B\"{o}ttcher-Wenzel Inequality)}$$

[Prop. 3]
$$r(A,B) \le c(d) \|A\|^2 \|B\|^2$$

$$\Rightarrow \Gamma_{\alpha} \le \frac{c(d)}{d} \sum_{\beta} \Gamma_{\beta}$$

[Theorem 5] For any d-level GKLS,

$$\Gamma_{\alpha} \le \frac{\sqrt{2}}{d} \sum_{\beta=1}^{d^2 - 1} \Gamma_{\beta}$$

With r-function approach

$$r(A, B) \le c(d) ||A||^2 ||B||^2$$

Task: Find the best (minimum) constant c(d), such that inequality is saturated by some A and B

$$c_{\text{opt}}(d) = \sup_{A,B} \frac{r(A,B)}{\|A\|^2 \|B\|^2}$$

[Prop. 6] For any
$$A, B,$$

$$r(A, B) \le \frac{1 + \sqrt{2}}{2} ||A||^2 ||B||^2$$

The inequality is achieved by some A and B.

By unitary invariance and Cartesian decomposition, one can restrict matrix A to be diagonal:

$$A = \operatorname{diag}[a_1, a_2, ..., a_n] \quad B = \{b_{ij}\}_{i,j=1}^n$$

$$r(A, B) \le k||A||^2||B||^2 \qquad k(\sum_k a_k^2)(\sum_{i=j} |b_{ji}|^2) - \sum_{i \ne j=1} |b_{ji}|^2(a_i - a_i a_j)$$

$$\ge \sum_{i \ne j=1} |b_{ji}|^2(\sqrt{k-1}a_i - \sqrt{k}a_j)^2 \ge 0$$
Achievel bility is also asset

Achievability is also easity shown.

[Prop. 6] For any A, B, $r(A, B) \le \frac{1 + \sqrt{2}}{2} ||A||^2 ||B||^2$

The inequality is achieved by some A and B.

[Prop. 3] $r(A,B) \le c(d) ||A||^2 ||B||^2$ $\Rightarrow \Gamma_{\alpha} \le \frac{c(d)}{d} \sum_{\beta} \Gamma_{\beta}$

[Theorem 7] For any d-level GKLS,

$$\Gamma_{\alpha} \le \frac{1 + \sqrt{2}}{2d} \sum_{\beta=1}^{d^2 - 1} \Gamma_{\beta}$$

One may anticipate that this bound can no more be improved with r-function approach.

[Prop. 3]
$$r(A,B) \le c(d) \|A\|^2 \|B\|^2 \Rightarrow \Gamma_{\alpha} \le \frac{c(d)}{d} \sum_{\beta} \Gamma_{\beta}$$

$$r(u_{\alpha}, L_k)$$

A can be restricted to traceless!!

Eigenvector belonging to non-zero eigenvalue is traceless

$$\lambda_{\alpha} \neq 0 \Rightarrow {\rm tr} \ u_{\alpha} = 0$$
 Trace Preserving Property

[Prop. 8] For any complex matrices $A, B \in M_d(\mathbb{C})$ with trA = 0,

$$r(A,B) \le \frac{1+\sqrt{2(1-\frac{1}{d})}}{2} ||A||^2 ||B||^2$$

where the equality can be achieved by some A and B.

[Prop. 3] $r(A,B) \le c(d) ||A||^2 ||B||^2$ $\Rightarrow \Gamma_{\alpha} \le \frac{c(d)}{d} \sum_{\beta} \Gamma_{\beta}$

$$d=2\Rightarrow\Gamma_{lpha}\leqrac{1}{2}\sum_{eta=1}^{d^2-1}\Gamma_{eta}$$
 Kimura (2002)

[Theorem 9] For any d-level GKLS,

$$\Gamma_{\alpha} \le \frac{1 + \sqrt{2(1 - \frac{1}{d})}}{2} \sum_{\beta=1}^{d^2 - 1} \Gamma_{\beta}$$

Conclusion

Based on r-function approach, we have found universal constraints for relaxation rates

Necessary Condition for CP condition and Markovianity testable by experiments

$$\Gamma_{\alpha} \leq \frac{1}{d} \sum_{\beta=1}^{d^2 - 1} \Gamma_{\beta} \leq \frac{1 + \sqrt{2(1 - \frac{1}{d})}}{2d} \sum_{\beta=1}^{d^2 - 1} \Gamma_{\beta} \leq \frac{1 + \sqrt{2}}{2d} \sum_{\beta=1}^{d^2 - 1} \Gamma_{\beta} \leq \frac{\sqrt{2}}{d} \sum_{\beta=1}^{d^2 - 1} \Gamma_{\beta}$$

Tightest Conjecture ??
Still Conjecture !!

Thank you for your kind attention !!

Universal Constraints for GKLS generator $c(d)\Gamma_{\alpha} \leq \sum_{\beta=1}^{d^2-1} \Gamma_{\beta}$

